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We examine the state-of-the-art neural network (NN) approach and its flexible implementations in com-
bustion reaction model uncertainty quantification (UQ), optimization, and uncertainty minimization (UM).
The work is motivated by addressing the problem of limited scalability of the traditional polynomial re-
sponse surface methodology in handling large size of rate parameters and target data sets. Features of
the NN training, accuracy, and trade-offs in several key aspects of the NN application are discussed. We
show that for high-dimensional reaction model optimization and UM, a shallow NN with only one hidden
layer is more robust and accurate than the polynomial response methodology. Further, we demonstrate
that NN allows for adaptive training. New neural networks that augment new input parameters or up-
dates in a trial reaction model can be adapted from the existing networks with much smaller training
efforts. In addition, deep neural networks are capable of covering functional dependencies of initial ther-
modynamic conditions and boundary conditions, thus yielding generalized response surfaces with rate
parameters and thermodynamic/mixture conditions as the input for a given combustion property. The
NN approach can be readily integrated into the framework of the Method of Uncertainty Minimization
using Polynomial Chaos Expansions (MUM-PCE) developed earlier. We present a test case that uses the
trial Foundational Fuel Chemistry Model Version 2.0 (FFCM-2, a model consisting of 96 species and 1054
reactions for combustion of relevant Cy_4 species), optimizing it against FFCM-1 targets, to illustrate the
efficiency and accuracy of the NN method.
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1. Introduction the globally constrained error minimization and combines both the

state of knowledge in reaction kinetic parameters (and their un-

Mathematical modeling of complex reacting systems is a multi-
parameter problem. Many thermodynamic, chemical kinetic, and
transport parameters have their inherent uncertainties [1]. Not
only can these parameter uncertainties greatly impact the reliabil-
ity of model predictions, but they also lead to added difficulties
in uncovering missing reaction pathways [1-3]. Uncertainty quan-
tification (UQ), and as importantly, uncertainty minimization (UM)
is central to resolving these problems. The much-celebrated GRI
Mech effort [4,5] represents an earlier approach to fundamental
reaction model development and optimization. The approach uses
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certainties) and modern diagnostics of species and measurements
of global combustion properties to derive predictive reaction mod-
els. The need for uncertainty minimization (UM) was recognized
later [2,6]. The UM approach reduces the model prediction uncer-
tainty against a given set of experimental data, and it also enables
us to explore internal consistency of a reaction model and external
consistency of the model with available combustion data [2].
Critical to any kinetic model optimization and UM problems
is the need of a surrogate model or response surface for each
combustion experimental target [7]. Such a response surface pre-
maps a predicted combustion property (e.g., ignition delay) with
respect to the reaction model parameters, typically within their
ranges of uncertainty, and in this manner, it resolves the numer-
ical challenges during model optimization: rather than solving dif-
ferential equations for each combustion response, the response val-
ues are evaluated simply using algebraic relationships. Several re-
sponse surface methodologies have been used for reaction model
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optimization. Examples include sensitivity-based methods [8-10],
High Dimensional Model Representation (HDMR) [11,12], and fac-
torial based second-order polynomial representation [7]. Addition-
ally, the Dakota code [13], developed for general computational en-
gineering applications, employs response surface approaches rang-
ing from polynomial to a stochastic layered perceptron network.

Earlier, we extended the use of second-order polynomial re-
sponse to reaction model uncertainty minimization. The Method
of Uncertainty Minimization using Polynomial Chaos Expansions
(MUM-PCE) approach [2] optimizes the pre-exponential A-factors
of Arrhenius rate parameters and reduces the model prediction
uncertainty through the use of covariance matrix of the A-factors.
Based on the Bayes’ theorem, MUM-PCE assumes a log-normal dis-
tribution of rate parameters for the initial trial model and updates
the posterior mean and covariance matrix given a set of combus-
tion target data. It enables us to evaluate prediction uncertainties
of a model analytically. Later, Tao et al. [14] extended this approach
to co-optimizing the A-factors and activation energies. The MUM-
PCE method has been demonstrated and used in a broad range of
problems (see, e.g., [6,15-23]), and has been recently implemented
in the OpenSMOKE++ code (OptiSMOKE++) [24].

In an earlier effort, we used MUM-PCE to assimilate fundamen-
tal combustion data into the Foundational Fuel Chemistry Model
Version 1.0 (FFCM-1) [25,26]. The resulting model has well-defined
and reduced model uncertainties. FFCM-1 consists of 38 Cy_,
species and 291 reactions, targeting the combustion properties of
Co-C; fuels. A set of 149 pre-selected, active rate parameters (in-
cluding 99 pre-exponential factors and 50 third-body Chaperon ef-
ficiencies) were constrained against 146 experimental targets, from
ignition delay time, laminar flame speed, to species time histories
from shock tube and flow reactor experiments, covering a wide
range of thermodynamic conditions. The choice of the active rate
parameters was made through linear sensitivity analyses for each
optimization target considered.

In a more recent effort, we extended FFCM-1 to Cy-4 combus-
tion chemistry. The effort was especially relevant to the recent Hy-
Chem modeling of real, multicomponent fuel combustion [27-33].
In particular, the accuracy of the HyChem reactions models was
found to be particularly sensitive to the accuracy of the founda-
tional Cy_4 combustion chemistry [33]. The resulting FFCM Ver-
sion 2.0 (FFCM-2) consists of 96 species and 1054 elementary re-
actions [34]. Compared to FFCM-1, FFCM-2 used a substantially
larger target data set, consisting of 1192 independent combustion
data targets. For such a high-dimensionality problem, the 2"d-order
polynomial response surface model was found to be severely lim-
ited in its scalability and accuracy. Not only is this traditional re-
sponse surface approach computationally inefficient, the need for
pre-selecting “active” rate parameters introduces significant biases
and truncation errors in the response surfaces and thus the opti-
mization result.

To resolve the problem just discussed, we note that the neu-
ral network (NN) approach is better suited for handling high di-
mensional input efficiently. Within the NN framework, deep neu-
ral network is a terminology coined for an artificial neural net-
work that has two or more hidden layers as opposed to one-
single hidden layer. NN has been applied to complex problems
in many fields, from image classification [35], autonomous driv-
ing [36], gaming [37], to natural language processing [38]. A variety
of transfer learning techniques [39] have been developed to en-
able efficient adaptation of existing NNs to new and similar tasks
with great scalability. Likewise, neural networks have also been
gaining popularity in combustion research [40-48]. For example,
NNs have been shown to accelerate the computation of chemical
terms in computational fluid mechanic solvers. Ji et al. [43] used
Physics Informed Neural Networks (PINNs) with quasi-steady-state
assumption (QSSA) to solve stiff chemical kinetic problems. Zhang
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et al. [44] designed a multi-scale sampling approach and devel-
oped a stable, three-hidden layer NN to predict the temporal evo-
lution of chemical kinetics. NNs were shown to facilitate the dis-
covery of reaction pathways from speciation time-history data. Ji
et al. [45] proposed a chemical reaction neural network (CRNN)
based on the law of mass action and Arrhenius law to interpret
the neural network coefficients as reaction pathways and rate con-
stants. NN has been used also in sensitivity analysis and optimiza-
tion of combustion kinetic models [46]. Li et al. [47] developed NN-
HDMR approach to calculate global sensitivity indices. They first
constructed NN as a random sample generator and combined it
with HDMR to improve the convergence and computational effi-
ciency. Wang et al. [48] used the NN surrogate model with Markov
chain Monte Carlo (MCMC) approach to optimize a methanol sub-
reaction model.

In the present work, we examined the state-of-the-art NN ap-
proach and its implementation in MUM-PCE, targeting the UQ and
UM problems of importance to combustion chemistry. Our NN im-
plementation used the PyTorch library [49], which can be read-
ily interfaced with Cantera [50]. The training, accuracy, and trade-
offs in several key aspects of NN applications are discussed in de-
tail. We show that for high-dimensional problems, such as FFCM-2,
even a shallow NN with one hidden layer is more accurate than the
polynomial response methodology, and as importantly both shal-
low and deep NNs are found to be substantially more scalable
than the earlier polynomial method. The resulting NN response
surfaces (NN-RSs) allows us to easily extract sensitivity coefficients.
We demonstrate that NN-RS can be readily incorporated into the
MUM-PCE framework. To evaluate NN-MUM-PCE, we present a
test case that uses the trial FFCM-2 as the example, optimizing it
against FFCM-1 targets (a subset of the FFCM-2 targets). Further,
we demonstrate that NN can enable adaptive training. For exam-
ple, new NN-RSs that augment new input parameters or updates
in the trial rate parameters can be adapted from the existing NN-
RSs with much smaller training sample sizes. Finally, NN-RSs can
be extended to cover functional dependencies of initial thermody-
namic conditions and boundary conditions, thus yielding broad re-
sponse surfaces as functions of the rate parameters for an array of
combustion responses.

2. Methodology

In this section, we discuss the mathematical frameworks for
NN-RS, the extension of MUM-PCE to NN-MUM-PCE, the strategy
for adaptive training, and the architecture of incorporating ther-
modynamic conditions into NN-RS.

2.1. Neural network problem setup

Neural network maps the A-factors of a reaction model into a
combustion response y (e.g., laminar flame speed, ignition delay
time, and species). As before [6,7], we first normalize the A-factors
by

. — log(Ax/Ak.0)
log fi

where A, is the A-factor of the k" rate parameter (k=1,...,Ky),
Ao and fj are its nominal value (trial value) and uncertainty fac-
tor, respectively. In this way, x; is bound as x;, € [-1, 1]. The Chap-
eron efficiencies are normalized by

X = log(Bum.k/Bum.k.0) 2)

lOg fM,k '

where By is the M third body of the k' reaction, and By o
and fy are its nominal value and uncertainty factor, respectively.

. (1)
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Fig. 1. A generalized neural network. Left panel: a schematic of the neural network architecture. The left most (blue) layer is the input layer of K input variables (normalized
rate parameters); the right most (green) layer is the single-node output layer; the layers in between (red) are the hidden layers numbered as 1,2, ..., H, with my, my, ..., my
hidden nodes, respectively, for each layer. Right panel: a zoomed-in view of the mathematical operations in each hidden-layer node, including linear combination and
nonlinear activation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Here | =K, + 1, ..., K4 + Ky, where Ky, is number of Chaperon ef-
ficiencies considered in an optimization study.

Fig. 1 illustrates the general architecture of the neural network
employed here. The first layer (input layer) is the x vector with di-
mension K, i.e., X =[x;,...,xk]7. For example, in FFCM-2, we have
Ky = 1,029 (excluding 25 chemiluminescence reactions from the
1054 reactions) and Ky, = 23, so K = K, + Ky = 1,052. The output
layer is a scalar y, representing the response of a single combustion
property. The layers in between are referred to as hidden layers.
The number of hidden layers H and the dimensions for each hid-
den layer my, my, ..., my are hyper-parameters to be determined
during neural network training. As will be discussed later, we ex-
perimented with a wide variety of NN setups and found that a sin-
gle hidden layer with 16 hidden nodes (H =1, m; = 16) is appro-
priate for most combustion responses. Hence, unless it is otherwise
indicated, our base-case NN setup uses H =1, m; = 16.

A one-hidden layer NN-RS may be expressed by

y =Wsa+ by, Wy e R™X™ b, € R, (3)
where

a=¢(z) = ReLU(z) = max(0, z), (4)
and

z=W;x+by, Wy e R™*K by e R™*1, (5)

In the above equations, Wy, W,, and b,y are vectors of coefficients
and b, is a scalar, all to be trained. The function ¢ (z) introduces
nonlinearity into the neural networks. For example, the Rectified
Linear Unit (ReLU) [51] is a piece-wise linear function; it over-
comes the vanishing gradient issue and gives rises to fast con-
vergence to training than the traditional Sigmoid or Hyperbolic
tangent functions [51]. Unless otherwise indicated, ReLU is used
herein because of its simplicity. The resulting piece-wise linear
function is sufficient as the higher-order dependencies to the rate
parameters are insignificant for the combustion targets considered
herein. The derivative of y is available analytically,

dy . T o 99 (2)
X Wi'W; @ oz (6)
where
a¢(Z) 1 Zj >0

9z [dj]’ dj =10 zj < 0, (7)
and ® represents element-wise matrix multiplication.

Equations (3), (4), (5) considers the rate parameters X as inputs

only. In Section 2.5, we will discuss the possibility of incorporating
thermodynamic conditions as inputs in addition to x.

2.2. Sampling and data generation

Random sampling is unsuitable for high-dimensional prob-
lems, as it produces clusters and holes in the samples with re-
duced statistical efficiency. In the present work, we used Sobol se-
quence [52] instead. The Sobol sequence attempt to add sample
points successively to positions as far away from existing sample
points as possible so as to avoid clustering, and has been shown to
converge rather efficiently [53]. The Sobol samples are inherently
uniform with respect to the sampled space. Owing to the high
dimensionality of the current problem, however, a uniform Sobol
sample is inadequate because most samples would have been too
far from the origin of the N-dimensional space [54], to an ex-
tent that the NN is especially under trained around the center of
the parameter space. Since x is independently normally distributed
with the bounds -1 and +1 being interpreted as the two-standard
deviation for each rate parameter [2], the probability around x =0
is the highest with respect to model optimization and UM. For this
reason, we designed a sampling approach that highlights the need
of accuracy around x =0 and yet considers the far edge of the
parametric space as well. Specifically, we carried out Sobol sam-
pling following an inverse cumulative Gaussian distribution for a
subspace given by the standard deviation of its samples. Three
such subspaces were considered; Set 1 has a standard deviation of
0.1 in x; Sets 2 and 3 have standard deviations of 0.3, and 0.5, re-
spectively, as illustrated in Fig. S1 of the Supplementary Materials
(SM). Set 3 has twice more sample points assigned to it than Sets
1 and 3. Together, the three sets form the complete sample set.

For FFCM-2 with 1052 parameters, we found a combined data
sample size of 10,000 to be appropriate for the laminar flame
speed and 40,000 to be appropriate for logarithms of the igni-
tion delay and species concentration. The choice for the sample
size takes into consideration the computational cost, effect spar-
sity, and the performance of the resulting NN-RS. The samples
were partitioned as follows: 80% of data were randomly selected
for NN training; 10% were used for validating the hyper-parameter
choices; the remaining 10% were used for NN-RS validation.

Numerical simulations of the combustion properties were car-
ried out using Cantera [50]. Laminar flame speed was calculated
using over 400 mesh points covering an appropriate spatial do-
main, with multi-component transport and thermal diffusion. Igni-
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tion delay time and species profile were simulated under adiabatic,
and constant volume or constant pressure condition, depending on
the nature of the shock tube experiment. For pressure-dependent
unimolecular reactions, the A-factors of the high- and low-pressure
limit rate coefficients were perturbed by the same factor to keep
pressure fall-off in the rate coefficient unperturbed. Independent
perturbation of the low-pressure limit rate coefficient and hence
the fall-off is carried out through the perturbation of the selected
Chaperon efficiencies for the same reaction. We used a modified,
in-house Cantera code to allow perturbation of Chaperon efficien-
cies.

The performance of NN-RS depends heavily on the choice of the
hyper-parameters [55]. Section S1 of the Supplementary Materials
(SM) discusses the optimal approach to choosing the most impor-
tant hyper-parameters.

2.3. Evaluation metrics and performance requirements

To evaluate the NN performance, we calculated the relative er-
rors of the response values on the test data. We considered the
mean error (€mean) and 95-percentile error (€954) as the key eval-
uation metrics, as listed in Table 1, because they are more in-
dicative of the relevant parameter space away from sample out-
liers than the maximum error (€max). The requirements are most
stringent near the center of the parameter space (i.e., Set 1 with
o =0.1), and are more relaxed farther from the center (i.e., Set 2
with o = 0.3 and Set 3 with o = 0.5).

2.4. Adaptive learning and training

Adaptive training is another attractive NN feature over the con-
ventional response surface methodology. Notably, a response sur-
face trained for a combustion property does not lend any infor-
mation to the training of a new surface of a related combustion
property (e.g., ignition delay times of identical mixture conditions,
but with slightly different temperature or pressure). More impor-
tantly, the trial reaction model often requires several updates dur-
ing a typical optimization and uncertainty minimization process.
And each time such an update occurs, the entire set of response
surfaces must be regenerated without being able to leverage the
information available from a previous generation of the response
surfaces.

In NN, transfer learning or adaptive training refers to an ap-
proach in which we re-purpose a model trained on an old task and
use it on a new task. If the two tasks share similar structures and
patterns, the neural network leverages what it has already learned
and adapts to the new task with a few number of training samples
and a shortened training time. An obvious application of transfer
learning is to use an NN already trained for a thermodynamic con-
dition to the training of a new NN under related thermodynamic
conditions. Fig. 2 presents two other examples of adaptive train-
ing. The first case adds or splits one or more rate parameters to
the trial model (for example, adding a missing reaction, or split-
ting out the Chaperon efficiency of a pressure dependent reaction
and treating it an independent variable). In the left panel of Fig. 2,
we initialize all coefficients of the new NN with the old coeffi-
cients except for the parameter(s) that is/are added or split. The
right panel of Fig. 2 illustrates the update of two rate parameters
(x1 and xs) in the trial model (e.g., changes in activation energy or
temperature exponent in the modified Arrhenius equation). Here,
the modified parameters are randomly initialize while all other co-
efficients are taken fron a prior NN. These initialization strategies
enable the NN to adapt to new tasks with a substantially smaller
sample size.

Adaptive training is sensitive to the choice of learning rates. In
general, a small learning rate is necessary such that the training
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processes does not entirely unlearn from the previous training. Ex-
amples will be given in Section 3.2, illustrating the utility of adap-
tive learning.

2.5. Extending NN-RS with thermodynamic conditions as input

In the polynomial response surface method used earlier [4,15],
the rigidity of the polynomial functional form renders it impossi-
ble to consider thermodynamic conditions or boundary conditions
as possible inputs in a response surface, and each optimization tar-
get would require a separate response surface. Here we show that
NN is capable of incorporating the thermodynamic conditions as
inputs in addition to rate parameters x. Fig. 3 presents a schematic
illustrating the NN architecture. Inherently, such an NN must nec-
essarily be deep NN with more than one hidden layer. In the input
layer, x and a set of thermodynamic conditions (e.g., temperature
T, pressure p, mixture composition X) are processed with two sep-
arate sets of NN parameters. The two vectors in the first hidden
layer have the same dimension. They are concatenated before feed-
ing into the next hidden layer to make predictions. The two-tower
architecture makes it easier and more efficient for the extended
NN-RS to learn the dependency on the thermodynamic conditions.
The first hidden layer for rate parameters reduces the dimensional-
ity of x; the second hidden layer enables the thermodynamic con-
ditions processed to interact with key kinetic parameters only. In
contrast, directly appending the thermodynamic conditions into an
NN effectively treats T, p and X simply as some new variables,
leading to a higher dimensional input that makes learning less ef-
ficient.

The extended NN architecture is best utilized with physical con-
siderations or insights. For example, for ignition delay, constrain-
ing the forms of input for T and X following the Lifshitz empirical
function [56] not only improves the NN-RS performances within
the range of thermodynamic conditions considered, it also allows
for extrapolation to conditions outside of the initial range consid-
ered. This physics-guided NN feature will be specifically presented
and discussed in Section 3.3.

2.6. Implementing neural network in MUM-PCE and for other related
applications

It is evident that the NN-RS can be used for extracting the
gradient dy/dx, and hence, the global and local sensitivity coeffi-
cients, as discussed in Section S3 of the SM. Here we focus our dis-
cussion on the implementation of NN-RS into MUM-PCE. Details of
MUM-PCE can be found elsewhere [2], Briefly, MUM-PCE allows for
constraining a reaction model to better predict a set of combustion
property targets, and as importantly, reduces model prediction un-
certainty via the rate-parameter covariance matrix. We define the
objective function as

() = min | % (M)Zmnxnﬁ}, (8)
m=1

Om,obs

where M is the number of experimental targets. The first term of
Eq. (8) is the cost function; it measures the deviation between
the model prediction yn, (X) and the experimental value yp, .. The
second term is the Euclidean norm of the normalized rate param-
eter X, measuring the distances of the optimized rate parameters
from the trial assignments. Each target m is inversely weighted by
the its experimental uncertainty oy, o. In the second term, A is a
regularization coefficient, governing the weight applied to the re-
action kinetics relative to combustion property data. For example,
in FFCM-1, A = 4.

In the FFCM-1 effort, MUM-PCE implements the Levenberg-
Marquardt (LM) algorithm [57] to solve the nonlinear least-square
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Fig. 2. Adaptive training of NN-RS using transfer learning. Left panel: adapting to input parameters due to an added reaction (xx,;) or with a parameter splitting (xx)
splitting into two parameters (xx and xi.1); Right panel: adapting to changes in Arrhenius expressions (highlighted as x; and xs). In both case, the parameters in yellow
circles are initialized randomly to account for changes in the kinetics, while all other parameters in blue circles may be initialized using values from a previous NN-RS. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. A generalized NN-RS architecture that incorporates the thermodynamic conditions as input. For the bottom layer, the normalized reaction rate parameters X (in
blue) and thermodynamic conditions (eg., temperature T, pressure p and mixture composition X) (in green) are processed as two separate sets of coefficients. In the second
layer, the two processed vectors (red) are concatenated (orange) and passed through the third layer (purple) to predict the combustion responses. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

problem. LM works well for low-dimensional, unbounded prob-
lems. FFCM-2, however, is an exceptionally higher-dimensional,
sparse problem. We applied the trust region reflective (TRF) algo-
rithm from the SciPy nonlinear least squares optimizer [58]. TRF
explicitly applies the parameter bounds so that the optimized rate
parameters are more interpretable. The TRF algorithm also requires
as input the gradient of y, which is available analytically, as dis-
cussed before.

The posterior covariance matrix may be obtained by lineariz-
ing the response surface after optimization [2]. Assuming the rate
parameters distribute as a multivariate log-normal distribution, we
represent the optimized rate parameters x* as
X" = x(O)* + X(l)*f,

(9)

where & ~N(0,1) is a standard normal random variable; the
mean x©* is the optimized rate parameters. By applying the
Bayes’ theorem with Gaussian prior, the covariance matrix X* is:

')
B x O OT = (3o, (10)

m=1 ~m,obs

where I is the identity matrix, and Jn is the Jacobian matrix eval-

uated at the optimal point
ay

IJm= ﬁ'x:x(o)*' (11)
The prediction uncertainty of the trial or optimized model o}

can then be calculated using polynomial chaos expansions,

o = [Jm"LII3 + Al IL"HmL| |2, (12)
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where J;, and Hy, are the Jacobian and Hessian matrix at the op-
timal point, and L is the Cholesky decomposition of the covariance
matrix. For the trial model, the covariance matrix is a diagonal ma-
trix given by %I. For the optimized model, the covariance matrix
is given by Eq. (10). For NN-RS with ReLU activation, the second
term vanishes because Hessian matrix is zero.

MUM-PCE evaluates the consistency of reaction model with re-
spect to the experimental data by calculating the F score of a tar-
get m as

ym,obs — Ym,opt

Fi = SO, (13)
where ym ope is the optimized model prediction. A target m is re-
garded as inconsistent when |Fy| > 1. That is, the optimized model
cannot reconcile the target within its experimental uncertainty by
adjusting the rate parameters within the uncertainty limits. The in-
consistent targets are removed from the target list and the model
is re-optimized. This process is carried out iteratively until all re-
maining targets are consistent. The inconsistent targets are usually
further examined to understand the source of inconsistency.

We discuss the workflow of NN-MUM-PCE framework in Sec-
tion S4 of the Supplementary Material (SM), and highlight several
key features here. Unlike the original MUM-PCE [2], in which ac-
tive parameters are pre-selected from a linear sensitivity analysis
for each target and the remaining (inactive) parameters are frozen,
the current NN-RS, in principle, allows for all rate parameters to be
perturbed and optimized. While the benefits of this new capability
will be illustrated later, freezing unnecessary parameters is useful
to suppressing noises and produces optimization results that are
easier to interpret. In NN-MUM-PCE, a parameter x; does not con-
tribute to improving model prediction or reducing the prediction
uncertainty if |Ay/A, o — 1| < xx and when the optimized uncer-
tainty of x,, is larger than x,, where xyx is the multiplier threshold,
and xs is the uncertainty threshold. Such a parameter is frozen
(not optimized). Hence, two sets of rate parameters result from
this procedure, the optimized set X, and the unoptimized set X;.
We then apply the conditional normal distribution to obtain the
mean and covariance matrix for X, analytically as

b)) X
X’VN , > =N Ha , aa af , 14
(1. ) (|:H«fi| |:Zfa fo:l) (14)
where
Ma|xf:uf = Wa+ Zaaszl (Xf — 1g), (15)
Ea|xf=p.f = Yaa — ):af):;f‘ Yta (16)

Suffice it to note that NN-MUM-PCE allows for sequential op-
timization of combustion reaction models. In this case, all kinetic
parameters remain active in the NN response surfaces, and which
subset of the parameters are to be optimized is specified in the op-
timization stages. Because of the hierarchical nature of combustion
chemistry, the prediction uncertainty of a reaction model for the
combustion of a larger hydrocarbon fuel relies on an uncertainty-
minimized model of smaller hydrocarbons. In principle, the se-
quential optimization strategy allows us to exploit such structures
and extend our studies to new fuels readily.

3. Results and discussion
3.1. Comparison of polynomial response to neural network response

To demonstrate a key advantage of the NN approach, we first
discuss the truncation errors in conventional 2"¥-order polynomial
response surfaces. As discussed earlier, 2"-order polynomial re-
sponse surfaces based on a fractional factorial design has a lim-
ited scalability. The minimal number of training samples required
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is (n? +3n)/2 + 1, where n is the number of “active” rate param-
eters selected from a sensitivity analysis. Many of the past studies
assumed n = 20 [2,4-6]. Fig. 4 shows the truncation errors of three
n = 20, 2"-order polynomial response surfaces, one each selected
for the laminar flame speed S? (a stoichiometric C;H,/air mixture
at 300 K unburned gas temperature and 1 atm pressure), and the
ignition delay 75, and peak CO mole fraction Xco (1.32% CyHgs-
3.95% 0,-94.73% Ar, Ts = 1300 K, ps =15 bar). We tested these
polynomial response surface on two test data sets: one that only
varies the 20 active parameters (the top row), the other that al-
lows all 1052 parameters of FFCM-2 to vary (the bottom row). As
observed, the polynomial responses are sufficiently accurate within
the active parameter spaces, but they are grossly inaccurate when
the initially assumed "inactive” parameters are varied due to trun-
cation error.

As expected, increasing the number of "active” parameters im-
proves the performance of the 2"@-order polynomials. Fig. 5 shows
the maximum relative error, 95-percentile relative error, and mean
relative error for the polynomial responses (symbols) built using
40,000 sample points, as a function of the number of active pa-
rameters n considered. In each case, we again used 2000 sample
points for testing, and all parameters were allowed to vary. The
initial drop of the relative errors from n =20 to n~ 70 to 80 is
caused by the reduction of the truncation errors, and the results
shown in Fig. 5 suggest that a full consideration of the active pa-
rameters in response surface development requires from 60 to 80
active parameters, depending on the type of the combustion re-
sponses. The relative errors exhibit a U-shaped dependence on n.
For large n values, the errors increase due to bias-variance trade-
off for polynomial fittings [54].

Another aspect of the problem is the number of samples
needed for polynomial and NN-RS training. Fig. 6 compares the
performance of a n = 70, 2"-order polynomial and NN-RS in terms
of the relative errors as we increase the number of the samples
used for training. To evaluate the performance, we used an iden-
tical set of 2000 samples to test all surfaces generated. Further-
more, to understand the convergence of the polynomial and NN-RS
performance with respect to the training sample size, we repeated
the training 10 times at each sample size; and each set of sam-
ple is extracted from a full set of Sobol sample of 40,000 points.
This procedure allows us to derive the mean and standard devi-
ation of the relative errors of each type of the response surfaces
with respect to the training sample size. Fig. 6 shows the perfor-
mance evolution of the polynomial and NN-RS. Here, we used the
ignition delay time of a stoichiometric CH4/O, mixtures diluted in
77.5% CO, (Ts = 1374 K, ps = 27.1 atm) as the example. Several fea-
tures can be observed from Fig. 6. For sample sizes < 3000, the
trained surfaces generally have relative errors with large standard
deviations, thus indicating the lack of convergence at those sizes
for both type of the surfaces. This is especially true for the NN-
RS; when trained on only 3000 samples, both the errors and its
spread are rather large. The errors in the 2"¥-order polynomial de-
cay faster with respect to the sample size. This fast decay rate is
certainly associated with its substantially smaller dimension of the
parameter space (n = 70) than that of the NN-RS with n =1,052.
Also because of the difference in the dimensionality, the polyno-
mial is converged with around 15,000 training points, while the
NN-RS requires more training points to achieve the same accuracy.
Importantly, the training of this 1052 dimensional NN-RS requires
only three to four times more samples than that of the polynomial
of 70 dimensions.

The impact of the NN architecture is evaluated next. As shown
in Fig. 1, two key parameters define the complexity of an NN. They
are the number of hidden layers H and the number of the nodes
within each hidden layer m;, (h=1,...,H). Fig. 7 shows the vari-
ations of &mean and g5y of the NN-RSs as a function of m; for a
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Fig. 4. Truncation errors of n = 20, 2"-order polynomial response surfaces for three types of sample combustion responses. For each case, the polynomials were trained on
20,000 (Sobol) sample points, and the test data consist of 2000 samples. Top row: testing on data that vary the “active” parameters only; bottom row: testing on data that
vary all 1052 parameters; Left column: laminar flame speed (S}}); middle column: ignition delay time (7jg,); right column: peak CO mole fraction (Xco).
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Fig. 5. Relative errors of the 2"-order polynomial (open symbols) and neural network (closed symbol) response surfaces for three sample types of combustion response.
The “active” parameters in the 2"-order polynomials are selected based on the ranked local sensitivity (n < K) for each case, and the NN-RSs allow all parameters to vary
(i.e., n =K =1,052). The dashed lines are drawn to guide the eyes and for comparison with the polynomials. Left: laminar flame speed; middle: ignition delay time; right

panel: maximum CO mole fraction, under conditions shown in each respective panel.

Table 1
NN-RS performance requirements: mean relative errors €mean and
maximum 95-percentile relative errors €954 allowed for each sub-

test sets.
Test set Mean error (Emean) 95-percentile error (€gsy)
1(c=01) 1% 2%
2(0c=03) 2% 5%
3(0c =05) 3% 10%

single hidden later (H = 1) (left panel) and as a function of H for
a fixed m, =16 for h=1,..., H (right panel). The example shown
is again the ignition delay time of a stoichiometric CH4/O, mixture
diluted in 77.5% of CO, at Ts = 1374 K and p5 = 27.1 atm. Here, all
n = 1052 rate parameters were considered, and the training sample
set is held the same, with 60,000 training points. The tests shown
in Fig. 7 were made with Test set 2 (Table 1) with 2000 points. It is
seen that as we increase the number of nodes in a single hidden-
layer NN, the errors first decrease until m; ~ 50 and then it in-

creases for 50 < m; < 64. For m; > 64, the performance of the NN-
RS improved again as m; increases. This complex, double-descent
behavior has been discussed in [59]. Briefly, the worst choice for
an NN is when K x my is approximately equal to the training sam-
ple size. More accurate NNs are typically those that are either
under-parameterized or over-parameterized. Although an NN with
32 nodes gives more accurate results, the larger number of nodes
translates into great computational demand. For this reason and
considering the accuracy requirements listed in Table 1, we opt
for 16 nodes in our base-case NN. The right panel of Fig. 7 shows
the relative errors of four NNs, varying the number of hidden lay-
ers from H =1 to H =4, while keeping the number of nodes at
16 for each hidden layer. Clearly, the impact of H on the per-
formance of the NN-RS is, by all means, mild. It is for this rea-
son that we employ a single hidden-layer NN as our base case
study.

Note that the analysis also provides key insight about the num-
ber of training sample points for NN development. For polynomial
responses, the minimum number of training samples required can
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Fig. 6. Variations of the relative errors, comparing 2"-order polynomial with n = 70 and NN-RSs with n = 1052, as a function of the sizes of the training set, using ignition
delay time of a stoichiometric CH4/O, mixtures diluted in 77.5% CO, (Ts = 1374 K, ps = 27.1 atm) as the example. The test sample size is 2,000. Symbols represent the errors
evaluated for the response surfaces trained on several randomly selected training samples, and lines and error bars are the mean error and its standard deviation at each

training sample size.
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Fig. 7. Variations of the relative errors of a single hidden-layer NN (left) as a function of the number of nodes m; and of single-versus-multi-hidden layer NNs (right), all
with 16 nodes, as a function of the number of hidden layers, H, using ignition delay time of a stoichiometric CH4/O, mixtures diluted in 77.5% CO, (Ts = 1374 K, ps =
27.1 atm) as the example. The training sample size is 60,000; tests use Set 2 (Table 1) with 2000 sample points.

be calculated, as discussed before. For NNs, there is not a deter-
ministic approach yet, because the performance of NNs depend on
many more factors. Yet, one of the key factors is the initialization
of NN parameters. We will show in Section 3.2 that a good ini-
tialization can significantly reduce the number of training samples
needed.

To briefly summarize, the advantage of NN is that even though
its training may require a larger training sample set, a single
hidden-layer, 16-node NN-RS is particularly attractive to handling
large models; and without having to pre-select active parame-

ters, this NN approach is highly scalable for response surface
generation.

3.2. Adaptive NN training

The increased computational demand for NN training may be
alleviated by adaptive training, which uses the NN parameters of
an trained NN as the initial input to the training of a new NN for a
related set of input parameters or thermodynamic conditions. The
reason why adaptive training increases the training efficiency of
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Fig. 8. Selected thermodynamic conditions for adaptive training using the NN al-
ready trained for the ignition delay of a stoichiometric CH4/0,/77.5% CO, mixture
at the nominal ps and Ts condition marked by the center star. Three sets of new
conditions are tested with each set containing the variations of both ps and Ts. The
set closest to the nominal condition is denoted as set Ai; the intermediate set is Bi;
the furthest set is Ci (i =1, ...4), which extends ps from 12.3 atm to 87.4 atm, and
of Ts from 1,218 K to 1,705 K.
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new NN is clear. The NN parameters implicitly contains the sen-
sitivity information. As long as the sensitivity is similar, the al-
ready trained NN contains "prior” knowledge that must be useful
to training related NNs.

Here, we demonstrate adaptive training on several examples. In
the first example, we use the ignition delay time of a stoichio-
metric CH4-0,-77.5% CO, mixture, and define the center star of
Fig. 8 as the nominal ps (32.8 atm) and T5 (1421 K) condition. We
examine adaptive training efficiencies of the neighboring points
over the ranges of ps from 12.3 atm to 87.4 atm, and of Ts from
1,218 K to 1,705 K, also shown in Fig. 8. Fig. 9 shows the rates
of convergence of the NNs for each condition, comparing adaptive
training using the NN parameters obtained at the nominal condi-
tion and direct training without using the prior knowledge. For all
condition sets, the adaptive training (solid lines) always yield faster
convergence than without adaptive (dashed lines). If we examine
the tolerable mean and 95-percentile errors corresponding to the
Set 2 test data (see, Table 1 and the horizontal dash-dotted-dash
lines of Fig. 9), the NNs of the closest neighbors of the nominal
condition (Set A) are sufficiently accurate when adaptively trained
on only 400 samples. Without adaptive training, the NNs require
about 10,000 training samples to achieve the same accuracy. As ex-
pected, the efficiency of adaptive training decreases for set C with
ps and Ts values being furthest from the nominal condition. Even
so, adaptive training is always preferable, as it can be seen in the
bottom row of Fig. 9.

Next, we consider two examples in which new rate parameters
are adapted into the base-case NN. The first test case is the ig-
nition delay time of a stoichiometric C;Hg/O, mixture diluted in
91% argon with Ts = 1434 K and ps = 7.56 atm. The base NN does
not consider the Chaperon efficiency of Ar in the reaction C;Hy +
H (+M) = CHs (+M) separately form those of other third bodies.
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Fig. 9. Comparison of mean (open symbols) and 95-percentile (filled symbols) errors as a function of the number of samples used for NN training, comparing adaptive
training (solid lines) and without adaptive training (dashed lines) for the three sets of conditions (Ai: top panels, Bi: middle panels, and Ci: bottom panels, for i =1,...4)
shown in Fig. 8. The horizontal dashed-dotted-dashed lines indicate the mean and 90-percentile error tolerance levels. Tests use Set 2 of Table 1 with 2000 sample points.

Lines are drawn to guide the eyes.
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H+0,=0+0OH

Fig. 10. Projections of a generalized NN-RS of the laminar flame speed of CH;OH/air mixtures (To = 298 K, p=1 atm and 0.6 < ¢ < 1.8). The NN-RS, given as ys; (X, To, p. ¢),
covers the ranges of thermodynmaic conditions of 298 K < T < 450 K, 0.5 < p < 10 bar, and 0.6 < ¢ < 1.8, and rate parameters X = [X, ..., x¢|T, where K = 1052) On the
S: — ¢ planes, symbols are experimental data under the same Ty =298 K and p = 1 atm condition: ¢ Bardin et al. [62]; (J Davis and Law [63]; O Egolfopoulos et al. [64];
< Guelder [65]; > Katoch et al. [66]; v Metghalchi and Keck [67]; A Sileghem et al. [68]; O saeed and Stone [69]; O Vancoillie et al. [70]; ¥¢ Voss et al. [71]. The outer
axes show limiting rate values for reactions H+ 0, = O + OH and CO + OH = CO; + H. In each panel, NN-RS predictions are projected to the S; — ¢ planes to illustrate
the nominal model prediction (solid line) and model uncertainty (dashed lines) caused by the rate uncertainty of CH;0H + OH = CH30 + H,0 under each condition.

Suppose that later it is realized that the Chaperon efficiencies of Ar,
N, and H,0 must be treated separately in optimization against the
ignition delay (in argon) and laminar flame speed (in N,, where M
= H,0 exerts a notable impact on the flame speed). Splitting M
into M = Ar, M = H,0 and M = Ar and all other species forms
an extended NN, which needed only 4000 samples or 10% of those
in the base case for its training. Table S1 of the SM provides com-
parisons of the ranked first-order sensitivity coefficients calculated
by the brute force method with those evaluated from the NN-RS
adaptively trained and the NN-RS without adaptive training. The
results are nearly identical. In the second case, we consider reac-
tion model updates focusing on the iso-butene sub-model. A to-
tal of 13 iso-butene related reactions were updated from the orig-
inal FFCM-2 trial model, including the H-abstraction by O, of i-
C4Hg by considering recent theoretical calculation [60] and low-
temperature rate measurements [61]. We used the ignition delay
time of 2% iso-butene (i-C4Hg)-12% O, diluted in Ar at Ts = 1556 K
and ps = 1.7 atm as the test case. Adaptive NN training required
12,000 training samples (about 30% of the original training data)
to achieve the same accuracy of the base case NN. The ranked sen-
sitivity coefficients differ significantly before and after the rate up-
dates, as it can be seen in Table S2, because of the updates led to
reaction pathway changes during i-C4Hg oxidation. Yet, the signifi-
cantly reduced number of training samples indicate useful knowl-
edge transfer from the base-case NN to the adapted NN, which

10

comes from key reactions beyond the i-C4Hg submodel, including
H+ 0, = O + OH and CH3; + HO; = CH30 + OH.

3.3. Generalized NN-RS

The generalized NN architecture that considers both rate pa-
rameters and thermodynamic conditions has been illustrated in
Fig. 3. Here we illustrate the utility of this NN architecture again
using several examples. In the first example, we demonstrate an
NN-RS for the laminar flame speed of methanol-air mixtures,

¥s; = s, (X, To, p, @), (17)

where Ty is the unburned gas temperature (298 K < Ty < 450 K),
p is the pressure (0.5 < p < 10 bar), and ¢ is the equivalence ra-
tio (0.6 < ¢ < 1.8). Here, X = [1, ..., x¢|T, where K = 1052, as dis-
cussed before. 60,000 total samples were created using Sobol se-
quences, by jointly perturbing the rate parameters x and the ther-
modynamic conditions T, p and ¢. Fig. 10 show several projec-
tions of the generalized NN-RS in four dimensions, showing the
variation of the laminar flame speed as a function of ¢ and the
rate coefficient of CH30H + OH = CH30 + H,0. Each panel cor-
responds to a two-standard deviation value of the rates (x = £1)
for H+ 0y = O + OH or CO + OH = CO, +H, all evaluated for
To = 298 K and p = 1 atm. Also shown on the S;, — ¢ planes are
the experimental data reported under the same T, and p condi-
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Fig. 11. Generalized NN-RS for ignition delay times of CH4-O, mixtures diluted in Xco, = 75% - 95% for initial temperature Ts = 1250 — 1750 K, pressure ps =1 — 100 atm,
equivalence ratio ¢ = 0.5 — 2.0. Demonstrated here are ignition delay of a 3.91% CH4-9.92%0,-CO, mixture at ps = 31.5 atm. Symbols are experimental data [72]. The x- and
y-axes vary the A-factors of reactions CH3 + 02 = CH,0 + OH and CH,0 + O, = HCO + HO,, respectively. In each panel, NN-RS predictions were projected to illustrate the
prediction uncertainty caused by the rate uncertainty of the reaction CH; + HO, = CH30 + OH of the trial FFCM-2 reaction model.

tions, over a range of equivalence ratios. On the same planes, we
project three S;, profiles evaluated from the generalized NN-RS us-
ing the nominal rate value x = 0 for CH30H + OH = CH30 + H,0
(solid lines), and using x = +1 of the same reaction (dashed lines).
It can be seen that such plots and hence the underlying NN-RS
are useful to quantifying the impact of rate parameters of a re-
action model on the combustion property this model attempts to
predict.

Further, we considered ignition delay times of CHy — O, mix-
tures diluted in Xco, = 75% - 95% for initial temperatures Ts =
1250 K to 1750 K, pressures ps =1 atm to 100 atm and equiv-
alence ratios ¢ = 0.5 to 2.0. We created 200,000 uniform Sobol
samples jointly for the rate parameters X (K = 1052) and the ther-
modynamic conditions T, p, Xco, and ¢ within the range speci-
fied. For x, the uniform Sobol samples were converted to trun-
cated normal distributions as discussed in previous section. Un-
der all conditions, the generalized NN-RS was found to perform as
well as those trained under each thermodynamic condition. Each
panel in Fig. 11 shows the T;,, projections of the generalized NN-
RS in 1/T5 and the rate of CH3 + HO, = CH30 + OH, evaluated for
a 3.91% CH4-9.92% O, — CO, mixture at ps = 31.5 atm at four ex-
treme rates of x = +1 for reactions CH,0 + O, = HCO + HO, and
CHz + O = CH,0 + OH. Again shown in the T;,, versus 1/Ts planes
are the corresponding experimental data, and the model predic-
tions for x = 0 (solid lines) and x = 41 (dashed lines) of CH; + HO,
= CH30 + OH.

Another way to assess the accuracy of the generalized NN-RS is
by comparing the ignition delays plotted using the Lifshitz correla-
tion fitting by

tin = AT" exp (7 ) [CHAI[021P[CO,

1

Fig. 12 compares the correlation of Lifshitz correlation fitting using
computer experiments using the unoptimized FFCM-2 on 10,000
samples of thermodynamic conditions for CH4-O, mixtures di-
luted in Xco, = 75% — 95% with initial temperature T5 = 1250 K to
1750 K, pressure ps =1 atm to 100 atm and equivalence ratios
¢ =0.5 to 2.0. We carried out regression analyses and obtained
the 6 coefficients A, n, B, «, B8, y of Eq. (18) from these 10,000
samples, varying the rate coefficient of reaction R123 (CH3+HO,
= CH30+0H) from its nominal value of x = 0 to the 2o values of
x=1 and x = —1. The results are shown as solid lines in Fig. 12,
where the error bars indicate the 20 standard deviation of the fit.
Using the generalized NN-RS, we also plot its predictions for the
same 10,000 samples as symbols and the shaded bands, which in-
dicates the 20 band of the symbols. Clearly, the results shown in-
dicate that the NN-RS is accurate in both the nominal values and
their uncertainties over the broad range of thermodynamic and
mixture conditions tested.

The pros and cons of the NN-RS under single thermodynamic
condition and under more generalized thermodynamic conditions
are quite obvious. When multiple thermodynamic conditions are
selected as optimization targets, the use of a generalized NN-RS
can reduce the total number of training samples significantly. How-
ever, a generalized NN-RS is deeper and has more parameters;
it requires more training efforts, and more hyper-parameter tun-
ing. In contrast, a simple NN-RS under one thermodynamic con-
dition is smaller in its parameter size; requires a fewer num-
ber of training samples. As a result, the training process is eas-
ier to automate, as minimal hyper-parameter tuning is needed.
In practice, simple NN-RSs are preferred when there are only
few optimization targets to considered, and when the condi-
tions are lightly correlated; the generalized NN-RS is more de-
sirable for large-scale optimization with heavily correlated target
conditions.
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Fig. 12. Lifshitz correlations of the ignition delay time for CH4-O, mixtures diluted in Xco, = 75% — 95% for initial temperature Ts = 1250 K to 1750 K, pressure ps =1 atm
to 100 atm and equivalence ratios ¢ = 0.5 to 2.0. The solid lines are from regression of computer experiments using the trial FFCM-2 reaction model predictions varying the
normalized rate coefficient of reaction R123 (CH; + HO, = CH30 + OH) from its nominal value of x = 0 to the 20 values of x =1 and x = —1. The error bars indicate the
95% confidence interval (20 standard deviation) of the regression fits. Symbols and shaded bands are calculated from the generalized NN-RS under respective conditions.

3.4. Optimization case study: FFCM-1a

In this section, we demonstrate the NN-MUM-PCE approach
with a case study that optimizes the trial FFCM-2 and minimizes
the model uncertainty using only the target set of FFCM-1 (a sub-
set of FFCM-2). The 146 FFCM-1 targets covered the laminar flame
speed, ignition delay time, and selected speciation data in shock
tubes and flow reactors for H,, syngas, CH,O and CH,4 [26]. The re-
sulting optimized model is termed FFCM-1a. With everything else
being kept equal, the FFCM-1a optimization differs in two aspects
from that of FFCM-1. For each optimization target, the truncated
20-parameter 2"-order polynomial response surface in FFCM-1
was replaced with an NN-RS that allows all parameters to vary.
The sample size was 10,000 for laminar flame speeds and 40,000
for the ignition delay and species concentrations. We trained each
NN-RS separately. The adaptive training technique and the gener-
alized NN-RS architecture were not used in the current case study.
Also differing from the FFCM-1 optimization was that the current
optimization uses a trust region reflective (TRF) algorithm as op-
posed to the Levenberg-Marquardt algorithm used earlier [26]. For
this specific case, the computational cost is discussed in Section S5
of the Supplementary Material (SM). Because FFCM-2 considers re-
actant fuels up to the size of C4 and the FFCM-1 targets include
Co_1 fuels only, many rate parameters and their uncertainties in
FFCM-2 cannot be constrained by the FFCM-1 target set. And as
expected, we found in an initial optimization run that many rate
parameters see noise-level perturbations, and their 2o uncertainty
factor remain to be large. Hence, two threshold values were de-
fined: the rate perturbation multiplier threshold xx and the rate
20 uncertainty perturbation threshold x,.. If after optimization a
rate parameter has multiplier close to unity |A, /A, o — 1| < xx and
its 20 uncertainty remains to be larger than y,,, the rate param-
eter is deemed inactive and hence frozen. In this way, the rate
parameters that cannot be constrained by the target set return to
their nominal values, as discussed in Eq. (15) and Eq. (16).

Appropriate threshold values were studied in a parametric
study. An example is shown in Fig. 13 for a fixed value of ¥, =

12

0.96. As expected, an increase in xx leads to an initial rapid de-
crease in the number of active parameters that needs to be con-
sidered but the value of the cost function (e.g., the first term of
Eq. (8)) increases only marginally. The parametric study suggests
that x4 = 0.05 is appropriate because the cost function value in-
creases by 3.5% but the number of active parameters dropped by
93%, from 1052 to 72. These threshold values were used in FFCM-
1a optimization.

Summary results of the trial and optimized models are shown
in several 45° diagonal plots of Fig. 14, comparing the perfor-
mances of the reaction models before and after optimization
against the target data values, and between the current FFCM-1a
(the left two columns) and the original FFCM-1 (the right two
columns). Three types of target data are plotted: the laminar flame
speeds (top panels), shock tube ignition delays (middle panels),
and species related targets (bottom panels). As it can be seen, the
optimized FFCM-1a show improved predictions against the target
experimental data, and in general, the maximum and RMS errors
are reduced from the unoptimized FFCM-2 trial model to the op-
timized FFCM-1a model. Of equal importance is the model pre-
diction uncertainties, calculated using Eq. (12), are reduced sig-
nificantly, as demonstrated by the reduced error bar sizes of the
model predictions. Comparing the plots in the second and fourth
columns of Fig. 14, we also found that the performance of FFCM-
1a is nearly identical to that of FFCM-1.

To further illustrate the effectiveness of the current NN-MUM-
PCE approach, we plot in Fig. 15 three sample model valida-
tion sets, from the laminar flame speed of methane-air mixtures
at 1 atm pressure and 298 K over a range of equivalence ratio
(left column), the ignition delay of a 4.5% CH4-19.1% O,-Ar mix-
ture at 1.96 atm (middle column), and the CH3 time history pro-
file of methane oxidation (0.2% CH4-0.1% O,-Ar at 1.02 atm and
2264 K) (right column). From the unoptimized FFCM-2 (top pan-
els) to the optimized FFCM-1a (bottom panels), we see that a)
the nominal predictions of the optimized model are improved no-
tably for the ignition and CH3 species profile targets, and b) as
importantly, the prediction uncertainties of the optimized FFCM-
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Fig. 13. Parametric study of the cost function (the first term of Eq. (8)) and the number of active parameters as a function of the rate threshold x, for FFCM-1a optimization.
The uncertainty threshold x, value is fixed at 0.96.
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Fig. 15. Model predictions of unoptimized FFCM-2 (top panels) and optimized FFCM-1a (bottom panels) and respective experimental data (symbols). Left panels: laminar
flame speed of methane-air at 1 atm and 298 K (symbols: o Aung et al. [73]; (J Bosschaart and de Goey [74]; O Egolfopoulos et al. [75]; < Hassan et al. [76]; > Halter
et al. [77]; v Kobayashi et al. [78]; A Lowry et al. [79]; O Park et al. [80]; + Rozenchan et al. [81]; O Vagelopoulos and Egolfopoulos [82]; ¢ Yu et al. [83]; O Zhu
et al. [84]); middle panels: ignition delay time of a 4.5% CH,4-19.1% O,-Ar mixture at 1.96 atm (experimental data taken from ([85]); right panels: species time-history of CHj
during shock tube oxidation of methane (0.2% CH4-0.1% O,-Ar) at 1.02 atm and 2264 K (experimental data taken from [86]). The dashed lines and shaded areas in the top
panels are the trial model predictions and their 20" uncertainty band; the solid lines and shade areas in the bottom panels are the corresponding results of the optimized
FFCM-1a. The symbols marked by the error bars are the experimental targets and their 2o uncertainties; they are parts of the FFCM-1 target set.

la are reduced significantly for each of the targets shown in
Fig. 15.

4. Conclusions

In this work, we explored the neural network approach to con-
structing response surfaces for reaction model optimization and
uncertainty minimization. The study was motivated by the recent
FFCM-2 effort. Compared to the earlier FFCM-1 effort, the param-
eter dimensionality and the target set size of FFCM-2 are signif-
icantly larger. As a result, the earlier response surface approach
using 2"-order polynomials shows poor accuracy, efficiency and
scalability. Key observations and conclusions are summarized be-
low:

1. For large reaction model optimization, the polynomial response
surface approach gives poor accuracy because of the need to
define a set of active rate parameters, leading to significant
truncation error.

. In comparison, the neural network approach is found to be sig-
nificantly more accurate, scalable and efficient than the poly-
nomial response approach. The NN approach removes the need
to define active parameters, thus eliminating the truncation er-
rors; a shallow NN with only one hidden layer can handle over
1000 rate parameters as input variables, and a deep neural net-
work enables the development of generalized NN response sur-
faces that consider both the rate parameters and thermody-
namic and mixture conditions as the input variables.

. We examined a various of NN features and explored optimal
NN architectures for the response surface problems of relevance
to reaction model optimization and uncertainty minimization,
and demonstrated how adaptive NN training can improve the
training efficiency.

. We showed how the NN can be incorporated into the Method
of Uncertainty Minimization using Polynomial Chaos Expan-
sions (MUM-PCE), and demonstrated the resulting NN-MUM-
PCE approach to the optimization of FFCM-1a, using FFCM-2 as
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the base trial reaction model and the FFCM-1 target set for op-
timization and uncertainty minimization.

The analyses and results discussed herein suggest that the neu-
ral network approach is robust and particularly suited for the op-
timization and uncertainty minimization of large reaction models.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

We acknowledge support through the Office of Naval Research
(ONR) Grant No. NO0014-21-1-2475 with Dr. Eric Marineau as Pro-
gram Manager, and the Air Force Office of Scientific Research under
Grant FA9550-16-1-0486 with Dr. Chiping Li as Program Manager.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.combustflame.2023.
112679

References

[1] H. Wang, D.A. Sheen, Combustion kinetic model uncertainty quantification,
propagation and minimization, Prog. Energy Combust. Sci. 47 (2015) 1-31.

[2] D.A. Sheen, H. Wang, The method of uncertainty quantification and min-
imization using polynomial chaos expansions, Combust. Flame 158 (2011)
2358-2374.

[3] H. Wang, Chapter 14 - Uncertainty Quantification and Minimization, in: T. Far-
avelli, F. Manenti, E. Ranzi (Eds.), Mathematical Modelling of Gas-Phase Com-
plex Reaction Systems: Pyrolysis and Combustion, Computer Aided Chemical
Engineering, volume 45, Elsevier (2019), pp. 723-762.

[4] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Golden-
berg, C.T. Bowman, RK. Hanson, S. Song, W.C. Gardiner Jr, GRI-Mech (1999).
http://www.me.berkeley.edu/gri_mech.


https://doi.org/10.1016/j.combustflame.2023.112679
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0001
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0002
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0003
http://www.me.berkeley.edu/gri_mech

Y. Zhang, W. Dong, L.A. Vandewalle et al.

[5] M. Frenklach, H. Wang, M. Goldenberg, G. Smith, D. Golden, C. Bowman,
R. Hanson, W. Gardiner, V. Lissianski, GRI-Mech-an optimized detailed chemi-
cal reaction mechanism for methane combustion, Gas Research Institute Topi-
cal Report No. GRI-95/0058 (1995).

[6] D.A. Sheen, X. You, H. Wang, T. Lovas, Spectral uncertainty quantification, prop-
agation and optimization of a detailed kinetic model for ethylene combustion,
Proc. Combust. Inst. 32 (2009) 535-542.

[7] M. Frenklach, H. Wang, M.J. Rabinowitz, Optimization and analysis of large
chemical kinetic mechanisms using the solution mapping method-combustion
of methane, Prog. Energy Combust. Sci. 18 (1992) 47-73.

[8] T. Varga, T. Nagy, C. Olm, L.G. Zsély, R. Palvolgyi, E. Valko, G. Vincze, M. Cser-
hati, HJ. Curran, T. Turdnyi, Optimization of a hydrogen combustion mech-
anism using both direct and indirect measurements, Proc. Combust. Inst. 35
(2015) 589-596.

[9] T. Nagy, E. Valké, I. Sedy6, 1.G. Zsély, M. Pilling, T. Turdnyi, Uncertainty of
the rate parameters of several important elementary reactions of the H, and
syngas combustion systems, Combust. Flame 162 (2015) 2059-2076.

[10] S.G. Davis, A.B. Mhadeshwar, D.G. Vlachos, H. Wang, A new approach to re-
sponse surface development for detailed gas-phase and surface reaction ki-
netic model optimization, Int. J. Chem. Kinet. 36 (2003) 94-106.

[11] AS. Tomlin, T. Ziehn, The use of global sensitivity methods for the analysis,
evaluation and improvement of complex modelling systems, in: A.N. Gorban,
D. Roose (Eds.), Coping with Complexity: Model Reduction and Data Analysis,
Lecture Notes in Computational Science and Engineering, Springer, Berlin, Hei-
delberg (2011), pp. 9-36.

[12] T. Ziehn, A.S. Tomlin, GUI-HDMR - A software tool for global sensitivity analy-

sis of complex models, Environ. Modell. Softw. 24 (2009) 775-785.

M.S. Eldred, K.R. Dalbey, WJ]. Bohnhoff, B.M. Adams, L.P. Swiler, P.D. Hough,

D.M. Gay, J.P. Eddy, K.H. Haskell, DAKOTA : a multilevel parallel object-oriented

framework for design optimization, parameter estimation, uncertainty quan-

tification, and sensitivity analysis. Version 5.0, user’'s manual, Technical Report,

2010, doi:10.2172/991842.

[14] Y. Tao, H. Wang, Joint probability distribution of Arrhenius parameters in re-
action model optimization and uncertainty minimization, Proc. Combust. Inst.
37 (2019) 817-824.

[15] D.A. Sheen, H. Wang, Combustion kinetic modeling using multispecies time
histories in shock-tube oxidation of heptane, Combust. Flame 158 (2011)
645-656.

[16] S. Banerjee, R. Tangko, D.A. Sheen, H. Wang, C.T. Bowman, An experimental
and kinetic modeling study of n-dodecane pyrolysis and oxidation, Combust.
Flame 163 (2016) 12-30.

[17] O. Park, PS. Veloo, D.A. Sheen, Y. Tao, EN. Egolfopoulos, H. Wang, Chemical ki-
netic model uncertainty minimization through laminar flame speed measure-
ments, Combust. Flame 172 (2016) 136-152.

[18] D.A. Sheen, J.A. Manion, Kinetics of the reactions of h and CHj radicals with
n-butane: an experimental design study using reaction network analysis, J.
Phys. Chem. A 118 (2014) 4929-4941.

[19] L. Cai, H. Pitsch, Optimized chemical mechanism for combustion of gasoline
surrogate fuels, Combust. Flame 162 (2015) 1623-1637.

[20] L. Cai, H. Pitsch, Mechanism optimization based on reaction rate rules, Com-
bust. Flame 161 (2014) 405-415.

[21] L. Cai, H. Pitsch, S.Y. Mohamed, V. Raman, ]J. Bugler, H. Curran, S.M. Sarathy,
Optimized reaction mechanism rate rules for ignition of normal alkanes, Com-
bust. Flame 173 (2016) 468-482.

[22] F. vom Lehn, L. Cai, H. Pitsch, Sensitivity analysis, uncertainty quantification,
and optimization for thermochemical properties in chemical kinetic combus-
tion models, Proc. Combust. Inst. 37 (2019) 771-779.

[23] L.A. Mertens, J.A. Manion, Kinetics of isopropanol decomposition and reaction
with H atoms from shock tube experiments and rate constant optimization
using the method of uncertainty minimization using polynomial chaos expan-
sions (MUM-PCE), Int. J. Chem. Kinet. 53 (2021) 95-126.

[24] M. Fiirst, A. Bertolino, A. Cuoci, T. Faravelli, A. Frassoldati, A. Parente, Op-
tiSMOKE++: a toolbox for optimization of chemical kinetic mechanisms, Com-
put. Phys. Commun. 264 (2021) 107940.

[25] Y. Tao, G.P. Smith, H. Wang, Critical kinetic uncertainties in modeling hydro-

gen/carbon monoxide, methane, methanol, formaldehyde, and ethylene com-

bustion, Combust. Flame 195 (2018) 18-29.

G. Smith, Y. Tao, H. Wang, Foundational Fuel Chemistry Model Version

1.0 (FFCM-1), https://www.web.stanford.edu/group/haiwanglab/FFCM1/pages/

FFCM1.html(2017).

H. Wang, R. Xu, K. Wang, C.T. Bowman, R.K. Hanson, D.F. Davidson, K. Brezin-

sky, EN. Egolfopoulos, A physics-based approach to modeling real-fuel com-

bustion chemistry - I. Evidence from experiments, and thermodynamic, chem-

ical kinetic and statistical considerations, Combust. Flame 193 (2018) 502-519.

R. Xu, K. Wang, S. Banerjee, J. Shao, T. Parise, Y. Zhu, S. Wang, A. Movaghar,

DJ. Lee, R. Zhao, X. Han, Y. Gao, T. Lu, K. Brezinsky, EN. Egolfopoulos,

D.F. Davidson, RK. Hanson, C.T. Bowman, H. Wang, A physics-based approach

to modeling real-fuel combustion chemistry - II. Reaction kinetic models of jet

and rocket fuels, Combust. Flame 193 (2018) 520-537.

Y. Tao, R. Xu, K. Wang, J. Shao, S.E. Johnson, A. Movaghar, X. Han, J.-W. Park,

T. Lu, K. Brezinsky, EN. Egolfopoulos, D.F. Davidson, R.K. Hanson, C.T. Bowman,

H. Wang, A physics-based approach to modeling real-fuel combustion chem-

istry - III. Reaction kinetic model of JP10, Combust. Flame 198 (2018) 466-476.

K. Wang, R. Xu, T. Parise, ]. Shao, A. Movaghar, DJ. Lee, J.-W. Park, Y. Gao,

T. Lu, EN. Egolfopoulos, D.F. Davidson, R.K. Hanson, C.T. Bowman, H. Wang, A

physics-based approach to modeling real-fuel combustion chemistry - IV. Hy-

[13]

[26]

[27]

[28]

[29]

(30]

15

Combustion and Flame 251 (2023) 112679

Chem modeling of combustion kinetics of a bio-derived jet fuel and its blends

with a conventional jet A, Combust. Flame 198 (2018) 477-489.

C. Saggese, K. Wan, R. Xu, Y. Tao, C.T. Bowman, J.-W. Park, T. Lu, H. Wang, A

physics-based approach to modeling real-fuel combustion chemistry - V. NOx

formation from a typical Jet A, Combust. Flame 212 (2020) 270-278.

R. Xu, C. Saggese, R. Lawson, A. Movaghar, T. Parise, J. Shao, R. Choud-

hary, J.-W. Park, T. Lu, RK. Hanson, D.F. Davidson, EN. Egolfopoulos, A. Aradi,

A. Prakash, V.R.R. Mohan, R. Cracknell, H. Wang, A physics-based approach

to modeling real-fuel combustion chemistry - VI. Predictive kinetic models of

gasoline fuels, Combust. Flame 220 (2020) 475-487.

R. Xu, H. Wang, A physics-based approach to modeling real-fuel combustion

chemistry - VII. Relationship between speciation measurement and reaction

model accuracy, Combust. Flame 224 (2021) 126-135.

[34] Y. Zhang, W. Dong, L. Vandewalle, R. Xu, G. Smith, H. Wang, Foundational Fuel
Chemistry Model Version 2.0 (FFCM-2), https://www.web.stanford.edu/group/
haiwanglab/FFCM2/pages/FFCM2.html(2022).

[35] A. Krizhevsky, 1. Sutskever, G.E. Hinton, ImageNet classification with deep con-

volutional neural networks, Advances in Neural Information Processing Sys-

tems, volume 25, 2012.

P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo,

Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, ]J. Ngiam, H. Zhao, A. Tim-

ofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi, Y. Zhang, ]. Shlens, Z. Chen,

D. Anguelov, Scalability in perception for autonomous driving: Waymo open

dataset, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR), IEEE, Seattle, WA, USA (2020), pp. 2443-2451.

S.D. Holcomb, W.K. Porter, S.V. Ault, G. Mao, ]. Wang, Overview on DeepMind

and its AlphaGo Zero Al, Proceedings of the 2018 International Conference on

Big Data and Education, ICBDE 18, Association for Computing Machinery, New

York, NY, USA (2018), pp. 67-71.

[38] J. Devlin, M.-W. Chang, K. Lee,
deep Dbidirectional transformers
10.48550/arXiv.1810.04805

[39] J. Howard, S. Ruder, Universal language model fine-tuning for text classifica-
tion, 2018, 10.48550/arXiv.1801.06146

[40] M. IThme, W.T. Chung, A.A. Mishra, Combustion machine learning: principles,
progress and prospects, Prog. Energy Combust. Sci. 91 (2022) 101010.

[41] L. Zhou, Y. Song, W. Ji, H. Wei, Machine learning for combustion, Energy Al 7
(2022) 100128.

[42] Y. Wang, W. Wei, Y. Zhang, RK. Hanson, A new strategy of characteriz-
ing hydrocarbon fuels using ftir spectra and generalized linear model with
grouped-lasso regularization, Fuel 287 (2021) 119419.

[43] W. Ji, W. Qiu, Z. Shi, S. Pan, S. Deng, Stiff-PINN: physics-informed neural net-
work for stiff chemical kinetics, J. Phys. Chem. A 125 (2021) 8098-8106.

[44] T. Zhang, Y. Yi, Y. Xu, ZX. Chen, Y. Zhang, W. E, Z.-Q.J. Xu, A multi-scale sam-
pling method for accurate and robust deep neural network to predict combus-
tion chemical kinetics, Combust. Flame 245 (2022) 112319.

[45] W.]i, S. Deng, Autonomous discovery of unknown reaction pathways from data
by chemical reaction neural network, J. Phys. Chem. A 125 (2021) 1082-1092.

[46] B. Yang, Towards predictive combustion kinetic models: progress in model
analysis and informative experiments, Proc. Combust. Inst. 38 (2021) 199-222.

[47] S. Li, B. Yang, F. Qi, Accelerate global sensitivity analysis using artificial neu-
ral network algorithm: case studies for combustion kinetic model, Combust.
Flame 168 (2016) 53-64.

[48] J. Wang, Z. Zhou, K. Lin, CK. Law, B. Yang, Facilitating Bayesian analysis of
combustion kinetic models with artificial neural network, Combust. Flame 213
(2020) 87-97.

[49] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., PyTorch: an imperative style, high-performance
deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019).

[50] D.G. Goodwin, R.L. Speth, H.K. Moffat, B.W. Weber, Cantera: An object-oriented
software toolkit for chemical kinetics, thermodynamics, and transport pro-
cesses(2021). https://www.cantera.org.

[51] A.E. Agarap, Deep learning using Rectified Linear Units (RelLU), 2019,
10.48550/arXiv.1803.08375

[52] .M. Sobol’, On the distribution of points in a cube and the approximate eval-
uation of integrals, Comput. Math. Math. Phys. 7 (1967) 86-112.

[53] E. Hébrard, A.S. Tomlin, R. Bounaceur, F. Battin-Leclerc, Determining predictive
uncertainties and global sensitivities for large parameter systems: a case study
for n-butane oxidation, Proc. Combust. Inst. 35 (2015) 607-616.

[54] T. Hastie, R. Tibshirani, ]J. Friedman, The elements of statistical learning,
Springer Series in Statistics, Springer, New York, NY, 2009, doi:10.1007/
978-0-387-84858-7.

[55] LN. Smith, A disciplined approach to neural network hyper-parameters:
Part 1 - learning rate, batch size, momentum, and weight decay, 2018,
10.48550/arXiv.1803.09820

[56] A. Lifshitz, K. Scheller, A. Burcat, G.B. Skinner, Shock-tube investigation of igni-
tion in methane-oxygen-argon mixtures, Combust. Flame 16 (1971) 311-321.

[57] JJ. Moré, The Levenberg-Marquardt Algorithm: Implementation and Theory,
Numerical analysis, Springer (1978), pp. 105-116.

[58] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Courna-
peau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt,
M. Brett, J. Wilson, KJ. Millman, N. Mayorov, A.RJ. Nelson, E. Jones, R. Kern,
E. Larson, CJ. Carey, I. Polat, Y. Feng, EW. Moore, ]. VanderPlas, D. Laxalde,
J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald,
A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contributors, A. Vijayku-
mar, A.P. Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee,

[31]

[32]

(33]

[36]

[37]

K. Toutanova, BERT: Pre-training of
for language understanding, 2019,


http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0004
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0005
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0006
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0007
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0008
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0009
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0010
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0011
https://doi.org/10.2172/991842
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0013
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0014
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0015
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0016
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0017
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0018
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0019
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0020
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0021
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0022
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0023
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0024
https://www.web.stanford.edu/group/haiwanglab/FFCM1/pages/FFCM1.html
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0025
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0026
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0027
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0028
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0028
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0029
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0030
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0031
https://www.web.stanford.edu/group/haiwanglab/FFCM2/pages/FFCM2.html
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0032
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0033
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0034
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0035
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0036
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0037
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0038
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0039
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0040
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0041
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0042
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0043
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0044
https://www.cantera.org
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0045
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0046
https://doi.org/10.1007/978-0-387-84858-7
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0048
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0049
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0050

Y. Zhang, W. Dong, L.A. Vandewalle et al.

A. Rokem, C.N. Woods, C. Fulton, C. Masson, C. Hdggstrom, C. Fitzgerald,
D.A. Nicholson, D.R. Hagen, D.V. Pasechnik, E. Olivetti, E. Martin, E. Wieser,
F. Silva, F. Lenders, F. Wilhelm, G. Young, G.A. Price, G.-L. Ingold, G.E. Allen,
G.R. Lee, H. Audren, I. Probst, ].P. Dietrich, J. Silterra, J.T. Webber, J. Slavicr,

J. Nothman, J. Buchner, ]J. Kulick, J.L. Schonberger, J.V. de Miranda Cardoso,

J. Reimer, ]. Harrington, J.L.C. Rodriguez, J. Nunez-Iglesias, ]. Kuczynski, K. Tritz,

M. Thoma, M. Newville, M. Kiimmerer, M. Bolingbroke, M. Tartre, M. Pak,

NJ. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, PA. Brodtkorb, P. Lee,

RT. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Pe-

terson, S. More, T. Pudlik, T. Oshima, TJ. Pingel, T.P. Robitaille, T. Spura,

TR. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y.O. Halchenko,

Y. Vazquez-Baeza, SciPy 1.0: fundamental algorithms for scientific computing

in Python, Nat. Methods 17 (2020) 261-272.

S. Mei, A. Montanari, The generalization error of random features regression:

precise asymptotics and the double descent curve, Comm. Pure Appl. Math. 75

(2022) 667-766.

[60] C.W. Zhou, J.M. Simmie, K.P. Somers, C.F. Goldsmith, H.J. Curran, Chemical ki-
netics of hydrogen atom abstraction from allylic sites by 30,; implications for
combustion modeling and simulation, J. Phys. Chem. A 121 (2017) 1890-1899.

[61] T. Ingham, R. Walker, R. Woolford, Kinetic parameters for the initiation reac-
tion RH + Oy = R + HO,, Symp. (Int.) Combust. 25 (1994) 767-774.

[62] M.E. Bardin, E.V. Ivanov, EJ. Nilsson, V.A. Vinokurov, A.A. Konnov, Laminar
burning velocities of dimethyl carbonate with air, Energy Fuels 27 (2013)
5513-5517.

[63] S.G. Davis, C. Law, Determination of and fuel structure effects on laminar flame
speeds of C; to Cg hydrocarbons, Combust. Sci. Technol. 140 (1998) 427-449.

[64] F. Egolfopoulos, D. Du, C. Law, A study on ethanol oxidation Kinetics in lami-
nar premixed flames, flow reactors, and shock tubes, Symp. (Int.) Combust. 24
(1992) 833-841.

[65] O.L. Giilder, Laminar burning velocities of methanol, ethanol and isooctane-air
mixtures, Symp. (Int.) Combust. 19 (1982) 275-281.

[66] A. Katoch, M. Asad, S. Minaev, S. Kumar, Measurement of laminar burning ve-
locities of methanol-air mixtures at elevated temperatures, Fuel 182 (2016)
57-63.

[67] M. Metghalchi, ].C. Keck, Burning velocities of mixtures of air with methanol,
isooctane, and indolene at high pressure and temperature, Combust. Flame 48
(1982) 191-210.

[68] L. Sileghem, V. Alekseev, ]. Vancoillie, E. Nilsson, S. Verhelst, A. Konnov, Lami-
nar burning velocities of primary reference fuels and simple alcohols, Fuel 115
(2014) 32-40.

[69] K. Saeed, C.R. Stone, Measurements of the laminar burning velocity for mix-
tures of methanol and air from a constant-volume vessel using a multizone
model, Combust. Flame 139 (2004) 152-166.

[70] ]. Vancoillie, M. Christensen, EJ. Nilsson, S. Verhelst, A.A. Konnov, Temperature
dependence of the laminar burning velocity of methanol flames, Energy Fuels
26 (2012) 1557-1564.

[59]

16

Combustion and Flame 251 (2023) 112679

[71] S. Voss, F. Rau, V.A. Alekseev, A.A. Konnov, R. Haas-WittmSS, R.T.E. Hermanns,
E. Volkov, LPH.D. Goey, A comparative study of laminar burning velocities of
methane, methanol and ethanol using the heat flux method, Proceedings of
the European Combustion Meeting (2015).

[72] ]. Shao, R. Choudhary, D.F. Davidson, R.K. Hanson, S. Barak, S. Vasu, Ignition
delay times of methane and hydrogen highly diluted in carbon dioxide at high
pressures up to 300 atm, Proc. Combust. Inst. 37 (2019) 4555-4562.

[73] K. Aung, L-K. Tseng, M. Ismail, G. Faeth, Response to comment by S.C. Tay-
lor and D.B. Smith on “laminar burning velocities and Markstein numbers of
hydrocarbon/air flames”, Combust. Flame 102 (1995) 526-530.

[74] K. Bosschaart, L. de Goey, The laminar burning velocity of flames propagat-
ing in mixtures of hydrocarbons and air measured with the heat flux method,
Combust. Flame 136 (2004) 261-269.

[75] FE. Egolfopoulos, P. Cho, C. Law, Laminar flame speeds of methane-air mixtures
under reduced and elevated pressures, Combust. Flame 76 (1989) 375-391.

[76] M. Hassan, K. Aung, G. Faeth, Measured and predicted properties of laminar
premixed methane/air flames at various pressures, Combust. Flame 115 (1998)
539-550.

[77] E Halter, T. Tahtouh, C. Mounaim-Rousselle, Nonlinear effects of stretch on the
flame front propagation, Combust. Flame 157 (2010) 1825-1832.

[78] H. Kobayashi, K. Seyama, H. Hagiwara, Y. Ogami, Burning velocity correlation
of methane/air turbulent premixed flames at high pressure and high tempera-
ture, Proc. Combust. Inst. 30 (2005) 827-834.

[79] W. Lowry, ]. de Vries, M. Krejci, E. Petersen, Z. Serinyel, W. Metcalfe, H. Curran,
G. Bourque, Laminar flame speed measurements and modeling of pure alkanes
and alkane blends at elevated pressures, J. Eng. Gas Turbines Power 133 (2011).

[80] O. Park, PS. Veloo, N. Liu, EN. Egolfopoulos, Combustion characteristics of al-
ternative gaseous fuels, Proc. Combust. Inst. 33 (2011) 887-894.

[81] G. Rozenchan, D. Zhu, C. Law, S. Tse, Outward propagation, burning velocities,
and chemical effects of methane flames up to 60 atm, Proc. Combust. Inst. 29
(2002) 1461-1470.

[82] C.M. Vagelopoulos, EN. Egolfopoulos, Direct experimental determination of
laminar flame speeds, Symp. (Int.) Combust. 27 (1998) 513-519.

[83] G. Yu, C. Law, C. Wu, Laminar flame speeds of hydrocarbon + air mixtures with
hydrogen addition, Combust. Flame 63 (1986) 339-347.

[84] D. Zhu, F. Egolfopoulos, C. Law, Experimental and numerical determination of
laminar flame speeds of methane/(Ar, N, CO;)-air mixtures as function of sto-
ichiometry, pressure, and flame temperature, Symp. (Int.) Combust. 22 (1989)
1537-1545.

[85] D.J. Seery, C.T. Bowman, An experimental and analytical study of methane ox-
idation behind shock waves, Combust. Flame 14 (1970) 37-47.

[86] A. Chang, D. Davidson, M. DiRosa, R. Hanson, C. Bowman, Shock tube experi-
ments for development and validation of kinetic models of hydrocarbon oxi-
dation, 25th Symp. (Int.) Combust., Poster (1994), pp. 3-23.


http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0050
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0051
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0052
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0053
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0054
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0055
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0056
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0057
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0058
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0059
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0060
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0061
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0062
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0063
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0064
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0065
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0066
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0067
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0068
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0069
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0070
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0071
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0072
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0073
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0074
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0075
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0076
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0077
http://refhub.elsevier.com/S0010-2180(23)00064-0/sbref0078

	Neural network approach to response surface development for reaction model optimization and uncertainty minimization
	1 Introduction
	2 Methodology
	2.1 Neural network problem setup
	2.2 Sampling and data generation
	2.3 Evaluation metrics and performance requirements
	2.4 Adaptive learning and training
	2.5 Extending NN-RS with thermodynamic conditions as input
	2.6 Implementing neural network in MUM-PCE and for other related applications

	3 Results and discussion
	3.1 Comparison of polynomial response to neural network response
	3.2 Adaptive NN training
	3.3 Generalized NN-RS
	3.4 Optimization case study: FFCM-1a

	4 Conclusions
	Declaration of Competing Interest
	Acknowledgment
	Supplementary material
	References


