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a b s t r a c t 

We examine the state-of-the-art neural network (NN) approach and its flexible implementations in com- 

bustion reaction model uncertainty quantification (UQ), optimization, and uncertainty minimization (UM). 

The work is motivated by addressing the problem of limited scalability of the traditional polynomial re- 

sponse surface methodology in handling large size of rate parameters and target data sets. Features of 

the NN training, accuracy, and trade-offs in several key aspects of the NN application are discussed. We 

show that for high-dimensional reaction model optimization and UM, a shallow NN with only one hidden 

layer is more robust and accurate than the polynomial response methodology. Further, we demonstrate 

that NN allows for adaptive training. New neural networks that augment new input parameters or up- 

dates in a trial reaction model can be adapted from the existing networks with much smaller training 

effort s. In addition, deep neural networks are capable of covering functional dependencies of initial ther- 

modynamic conditions and boundary conditions, thus yielding generalized response surfaces with rate 

parameters and thermodynamic/mixture conditions as the input for a given combustion property. The 

NN approach can be readily integrated into the framework of the Method of Uncertainty Minimization 

using Polynomial Chaos Expansions (MUM-PCE) developed earlier. We present a test case that uses the 

trial Foundational Fuel Chemistry Model Version 2.0 (FFCM-2, a model consisting of 96 species and 1054 

reactions for combustion of relevant C 0 –4 species), optimizing it against FFCM-1 targets, to illustrate the 

efficiency and accuracy of the NN method. 

© 2023 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

Mathematical modeling of complex reacting systems is a multi- 

arameter problem. Many thermodynamic, chemical kinetic, and 

ransport parameters have their inherent uncertainties [1] . Not 

nly can these parameter uncertainties greatly impact the reliabil- 

ty of model predictions, but they also lead to added difficulties 

n uncovering missing reaction pathways [1–3] . Uncertainty quan- 

ification (UQ), and as importantly, uncertainty minimization (UM) 

s central to resolving these problems. The much-celebrated GRI 

ech effort [4,5] represents an earlier approach to fundamental 

eaction model development and optimization. The approach uses 
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he globally constrained error minimization and combines both the 

tate of knowledge in reaction kinetic parameters (and their un- 

ertainties) and modern diagnostics of species and measurements 

f global combustion properties to derive predictive reaction mod- 

ls. The need for uncertainty minimization (UM) was recognized 

ater [2,6] . The UM approach reduces the model prediction uncer- 

ainty against a given set of experimental data, and it also enables 

s to explore internal consistency of a reaction model and external 

onsistency of the model with available combustion data [2] . 

Critical to any kinetic model optimization and UM problems 

s the need of a surrogate model or response surface for each 

ombustion experimental target [7] . Such a response surface pre- 

aps a predicted combustion property (e.g., ignition delay) with 

espect to the reaction model parameters, typically within their 

anges of uncertainty, and in this manner, it resolves the numer- 

cal challenges during model optimization: rather than solving dif- 

erential equations for each combustion response, the response val- 

es are evaluated simply using algebraic relationships. Several re- 

ponse surface methodologies have been used for reaction model 
. 

https://doi.org/10.1016/j.combustflame.2023.112679
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http://www.elsevier.com/locate/combustflame
http://crossmark.crossref.org/dialog/?doi=10.1016/j.combustflame.2023.112679&domain=pdf
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ptimization. Examples include sensitivity-based methods [8–10] , 

igh Dimensional Model Representation (HDMR) [11,12] , and fac- 

orial based second-order polynomial representation [7] . Addition- 

lly, the Dakota code [13] , developed for general computational en- 

ineering applications, employs response surface approaches rang- 

ng from polynomial to a stochastic layered perceptron network. 

Earlier, we extended the use of second-order polynomial re- 

ponse to reaction model uncertainty minimization. The Method 

f Uncertainty Minimization using Polynomial Chaos Expansions 

MUM-PCE) approach [2] optimizes the pre-exponential A -factors 

f Arrhenius rate parameters and reduces the model prediction 

ncertainty through the use of covariance matrix of the A -factors. 

ased on the Bayes’ theorem, MUM-PCE assumes a log-normal dis- 

ribution of rate parameters for the initial trial model and updates 

he posterior mean and covariance matrix given a set of combus- 

ion target data. It enables us to evaluate prediction uncertainties 

f a model analytically. Later, Tao et al. [14] extended this approach 

o co-optimizing the A -factors and activation energies. The MUM- 

CE method has been demonstrated and used in a broad range of 

roblems (see, e.g., [6,15–23] ), and has been recently implemented 

n the OpenSMOKE++ code ( OptiSMOKE++ ) [24] . 

In an earlier effort, we used MUM-PCE to assimilate fundamen- 

al combustion data into the Foundational Fuel Chemistry Model 

ersion 1.0 (FFCM-1) [25,26] . The resulting model has well-defined 

nd reduced model uncertainties. FFCM-1 consists of 38 C 0 −2 

pecies and 291 reactions, targeting the combustion properties of 

 0 -C 1 fuels. A set of 149 pre-selected, active rate parameters (in- 

luding 99 pre-exponential factors and 50 third-body Chaperon ef- 

ciencies) were constrained against 146 experimental targets, from 

gnition delay time, laminar flame speed, to species time histories 

rom shock tube and flow reactor experiments, covering a wide 

ange of thermodynamic conditions. The choice of the active rate 

arameters was made through linear sensitivity analyses for each 

ptimization target considered. 

In a more recent effort, we extended FFCM-1 to C 0 –4 combus- 

ion chemistry. The effort was especially relevant to the recent Hy- 

hem modeling of real, multicomponent fuel combustion [27–33] . 

n particular, the accuracy of the HyChem reactions models was 

ound to be particularly sensitive to the accuracy of the founda- 

ional C 0 −4 combustion chemistry [33] . The resulting FFCM Ver- 

ion 2.0 (FFCM-2) consists of 96 species and 1054 elementary re- 

ctions [34] . Compared to FFCM-1, FFCM-2 used a substantially 

arger target data set, consisting of 1192 independent combustion 

ata targets. For such a high-dimensionality problem, the 2 nd -order 

olynomial response surface model was found to be severely lim- 

ted in its scalability and accuracy. Not only is this traditional re- 

ponse surface approach computationally inefficient, the need for 

re-selecting “active” rate parameters introduces significant biases 

nd truncation errors in the response surfaces and thus the opti- 

ization result. 

To resolve the problem just discussed, we note that the neu- 

al network (NN) approach is better suited for handling high di- 

ensional input efficiently. Within the NN framework, deep neu- 

al network is a terminology coined for an artificial neural net- 

ork that has two or more hidden layers as opposed to one- 

ingle hidden layer. NN has been applied to complex problems 

n many fields, from image classification [35] , autonomous driv- 

ng [36] , gaming [37] , to natural language processing [38] . A variety

f transfer learning techniques [39] have been developed to en- 

ble efficient adaptation of existing NNs to new and similar tasks 

ith great scalability. Likewise, neural networks have also been 

aining popularity in combustion research [40–48] . For example, 

Ns have been shown to accelerate the computation of chemical 

erms in computational fluid mechanic solvers. Ji et al. [43] used 

hysics Informed Neural Networks (PINNs) with quasi-steady-state 

ssumption (QSSA) to solve stiff chemical kinetic problems. Zhang 
2

t al. [44] designed a multi-scale sampling approach and devel- 

ped a stable, three-hidden layer NN to predict the temporal evo- 

ution of chemical kinetics. NNs were shown to facilitate the dis- 

overy of reaction pathways from speciation time-history data. Ji 

t al. [45] proposed a chemical reaction neural network (CRNN) 

ased on the law of mass action and Arrhenius law to interpret 

he neural network coefficients as reaction pathways and rate con- 

tants. NN has been used also in sensitivity analysis and optimiza- 

ion of combustion kinetic models [46] . Li et al. [47] developed NN- 

DMR approach to calculate global sensitivity indices. They first 

onstructed NN as a random sample generator and combined it 

ith HDMR to improve the convergence and computational effi- 

iency. Wang et al. [48] used the NN surrogate model with Markov 

hain Monte Carlo (MCMC) approach to optimize a methanol sub- 

eaction model. 

In the present work, we examined the state-of-the-art NN ap- 

roach and its implementation in MUM-PCE, targeting the UQ and 

M problems of importance to combustion chemistry. Our NN im- 

lementation used the PyTorch library [49] , which can be read- 

ly interfaced with Cantera [50] . The training, accuracy, and trade- 

ffs in several key aspects of NN applications are discussed in de- 

ail. We show that for high-dimensional problems, such as FFCM-2, 

ven a shallow NN with one hidden layer is more accurate than the 

olynomial response methodology, and as importantly both shal- 

ow and deep NNs are found to be substantially more scalable 

han the earlier polynomial method. The resulting NN response 

urfaces (NN-RSs) allows us to easily extract sensitivity coefficients. 

e demonstrate that NN-RS can be readily incorporated into the 

UM-PCE framework. To evaluate NN-MUM-PCE, we present a 

est case that uses the trial FFCM-2 as the example, optimizing it 

gainst FFCM-1 targets (a subset of the FFCM-2 targets). Further, 

e demonstrate that NN can enable adaptive training. For exam- 

le, new NN-RSs that augment new input parameters or updates 

n the trial rate parameters can be adapted from the existing NN- 

Ss with much smaller training sample sizes. Finally, NN-RSs can 

e extended to cover functional dependencies of initial thermody- 

amic conditions and boundary conditions, thus yielding broad re- 

ponse surfaces as functions of the rate parameters for an array of 

ombustion responses. 

. Methodology 

In this section, we discuss the mathematical frameworks for 

N-RS, the extension of MUM-PCE to NN-MUM-PCE, the strategy 

or adaptive training, and the architecture of incorporating ther- 

odynamic conditions into NN-RS. 

.1. Neural network problem setup 

Neural network maps the A -factors of a reaction model into a 

ombustion response y (e.g., laminar flame speed, ignition delay 

ime, and species). As before [6,7] , we first normalize the A -factors 

y 

 k = 

log (A k /A k, 0 ) 

log f k 
, (1) 

here A k is the A -factor of the k th rate parameter ( k = 1 , . . . , K A ),

 k, 0 and f k are its nominal value (trial value) and uncertainty fac- 

or, respectively. In this way, x k is bound as x k ∈ [ −1 , 1] . The Chap-

ron efficiencies are normalized by 

 l = 

log (βM,k /βM,k, 0 ) 

log f M,k 

, (2) 

here βM,k is the M 

th third body of the k th reaction, and βM,k, 0 

nd f M,k are its nominal value and uncertainty factor, respectively. 
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Fig. 1. A generalized neural network. Left panel: a schematic of the neural network architecture. The left most (blue) layer is the input layer of K input variables (normalized 

rate parameters); the right most (green) layer is the single-node output layer; the layers in between (red) are the hidden layers numbered as 1 , 2 , . . . , H, with m 1 , m 2 , . . . , m H 

hidden nodes, respectively, for each layer. Right panel: a zoomed-in view of the mathematical operations in each hidden-layer node, including linear combination and 

nonlinear activation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ere l = K A + 1 , . . . , K A + K M 

, where K M 

is number of Chaperon ef-

ciencies considered in an optimization study. 

Fig. 1 illustrates the general architecture of the neural network 

mployed here. The first layer (input layer) is the x vector with di- 

ension K, i.e., x = [ x 1 , . . . , x K ] 
T . For example, in FFCM-2, we have

 A = 1 , 029 (excluding 25 chemiluminescence reactions from the 

054 reactions) and K M 

= 23 , so K = K A + K M 

= 1 , 052 . The output

ayer is a scalar y , representing the response of a single combustion 

roperty. The layers in between are referred to as hidden layers. 

he number of hidden layers H and the dimensions for each hid- 

en layer m 1 , m 2 , . . . , m H are hyper-parameters to be determined 

uring neural network training. As will be discussed later, we ex- 

erimented with a wide variety of NN setups and found that a sin- 

le hidden layer with 16 hidden nodes ( H = 1 , m 1 = 16 ) is appro-

riate for most combustion responses. Hence, unless it is otherwise 

ndicated, our base-case NN setup uses H = 1 , m 1 = 16 . 

A one-hidden layer NN-RS may be expressed by 

 = W 2 a + b 2 , W 2 ∈ R 

1 ×m 1 , b 2 ∈ R , (3)

here 

 = φ(z ) = ReLU (z ) = max (0 , z ) , (4)

nd 

 = W 1 x + b 1 , W 1 ∈ R 

m 1 ×K , b 1 ∈ R 

m 1 ×1 . (5) 

n the above equations, W 1 , W 2 , and b 1 are vectors of coefficients 

nd b 2 is a scalar, all to be trained. The function φ(z ) introduces

onlinearity into the neural networks. For example, the Rectified 

inear Unit (ReLU) [51] is a piece-wise linear function; it over- 

omes the vanishing gradient issue and gives rises to fast con- 

ergence to training than the traditional Sigmoid or Hyperbolic 

angent functions [51] . Unless otherwise indicated, ReLU is used 

erein because of its simplicity. The resulting piece-wise linear 

unction is sufficient as the higher-order dependencies to the rate 

arameters are insignificant for the combustion targets considered 

erein. The derivative of y is available analytically, 

∂y 

∂x 

= W 1 
T W 2 

T 
�

∂φ(z ) 

∂z 
, (6) 

here 

∂φ(z ) 

∂z 
= 

[
d j 

]
, d j = 

{
1 z j > 0 

0 z j � 0 , 
(7) 

nd � represents element-wise matrix multiplication. 

quations (3) , (4), (5) considers the rate parameters x as inputs 
3 
nly. In Section 2.5 , we will discuss the possibility of incorporating 

hermodynamic conditions as inputs in addition to x . 

.2. Sampling and data generation 

Random sampling is unsuitable for high-dimensional prob- 

ems, as it produces clusters and holes in the samples with re- 

uced statistical efficiency. In the present work, we used Sobol se- 

uence [52] instead. The Sobol sequence attempt to add sample 

oints successively to positions as far away from existing sample 

oints as possible so as to avoid clustering, and has been shown to 

onverge rather efficiently [53] . The Sobol samples are inherently 

niform with respect to the sampled space. Owing to the high 

imensionality of the current problem, however, a uniform Sobol 

ample is inadequate because most samples would have been too 

ar from the origin of the N-dimensional space [54] , to an ex- 

ent that the NN is especially under trained around the center of 

he parameter space. Since x is independently normally distributed 

ith the bounds -1 and +1 being interpreted as the two-standard 

eviation for each rate parameter [2] , the probability around x = 0 

s the highest with respect to model optimization and UM. For this 

eason, we designed a sampling approach that highlights the need 

f accuracy around x = 0 and yet considers the far edge of the 

arametric space as well. Specifically, we carried out Sobol sam- 

ling following an inverse cumulative Gaussian distribution for a 

ubspace given by the standard deviation of its samples. Three 

uch subspaces were considered; Set 1 has a standard deviation of 

.1 in x ; Sets 2 and 3 have standard deviations of 0.3, and 0.5, re-

pectively, as illustrated in Fig. S1 of the Supplementary Materials 

SM). Set 3 has twice more sample points assigned to it than Sets 

 and 3. Together, the three sets form the complete sample set. 

For FFCM-2 with 1052 parameters, we found a combined data 

ample size of 10,0 0 0 to be appropriate for the laminar flame 

peed and 40,0 0 0 to be appropriate for logarithms of the igni- 

ion delay and species concentration. The choice for the sample 

ize takes into consideration the computational cost, effect spar- 

ity, and the performance of the resulting NN-RS. The samples 

ere partitioned as follows: 80% of data were randomly selected 

or NN training; 10% were used for validating the hyper-parameter 

hoices; the remaining 10% were used for NN-RS validation. 

Numerical simulations of the combustion properties were car- 

ied out using Cantera [50] . Laminar flame speed was calculated 

sing over 400 mesh points covering an appropriate spatial do- 

ain, with multi-component transport and thermal diffusion. Igni- 
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ion delay time and species profile were simulated under adiabatic, 

nd constant volume or constant pressure condition, depending on 

he nature of the shock tube experiment. For pressure-dependent 

nimolecular reactions, the A -factors of the high- and low-pressure 

imit rate coefficients were perturbed by the same factor to keep 

ressure fall-off in the rate coefficient unperturbed. Independent 

erturbation of the low-pressure limit rate coefficient and hence 

he fall-off is carried out through the perturbation of the selected 

haperon efficiencies for the same reaction. We used a modified, 

n-house Cantera code to allow perturbation of Chaperon efficien- 

ies. 

The performance of NN-RS depends heavily on the choice of the 

yper-parameters [55] . Section S1 of the Supplementary Materials 

SM) discusses the optimal approach to choosing the most impor- 

ant hyper-parameters. 

.3. Evaluation metrics and performance requirements 

To evaluate the NN performance, we calculated the relative er- 

ors of the response values on the test data. We considered the 

ean error ( ε mean ) and 95-percentile error ( ε 95% ) as the key eval-

ation metrics, as listed in Table 1 , because they are more in- 

icative of the relevant parameter space away from sample out- 

iers than the maximum error ( ε max ). The requirements are most 

tringent near the center of the parameter space (i.e., Set 1 with 

= 0 . 1 ), and are more relaxed farther from the center (i.e., Set 2

ith σ = 0 . 3 and Set 3 with σ = 0 . 5 ). 

.4. Adaptive learning and training 

Adaptive training is another attractive NN feature over the con- 

entional response surface methodology. Notably, a response sur- 

ace trained for a combustion property does not lend any infor- 

ation to the training of a new surface of a related combustion 

roperty (e.g., ignition delay times of identical mixture conditions, 

ut with slightly different temperature or pressure). More impor- 

antly, the trial reaction model often requires several updates dur- 

ng a typical optimization and uncertainty minimization process. 

nd each time such an update occurs, the entire set of response 

urfaces must be regenerated without being able to leverage the 

nformation available from a previous generation of the response 

urfaces. 

In NN, transfer learning or adaptive training refers to an ap- 

roach in which we re-purpose a model trained on an old task and 

se it on a new task. If the two tasks share similar structures and

atterns, the neural network leverages what it has already learned 

nd adapts to the new task with a few number of training samples 

nd a shortened training time. An obvious application of transfer 

earning is to use an NN already trained for a thermodynamic con- 

ition to the training of a new NN under related thermodynamic 

onditions. Fig. 2 presents two other examples of adaptive train- 

ng. The first case adds or splits one or more rate parameters to 

he trial model (for example, adding a missing reaction, or split- 

ing out the Chaperon efficiency of a pressure dependent reaction 

nd treating it an independent variable). In the left panel of Fig. 2 ,

e initialize all coefficients of the new NN with the old coeffi- 

ients except for the parameter(s) that is/are added or split. The 

ight panel of Fig. 2 illustrates the update of two rate parameters 

 x 1 and x 5 ) in the trial model (e.g., changes in activation energy or

emperature exponent in the modified Arrhenius equation). Here, 

he modified parameters are randomly initialize while all other co- 

fficients are taken fron a prior NN. These initialization strategies 

nable the NN to adapt to new tasks with a substantially smaller 

ample size. 

Adaptive training is sensitive to the choice of learning rates. In 

eneral, a small learning rate is necessary such that the training 
4 
rocesses does not entirely unlearn from the previous training. Ex- 

mples will be given in Section 3.2 , illustrating the utility of adap- 

ive learning. 

.5. Extending NN-RS with thermodynamic conditions as input 

In the polynomial response surface method used earlier [4,15] , 

he rigidity of the polynomial functional form renders it impossi- 

le to consider thermodynamic conditions or boundary conditions 

s possible inputs in a response surface, and each optimization tar- 

et would require a separate response surface. Here we show that 

N is capable of incorporating the thermodynamic conditions as 

nputs in addition to rate parameters x . Fig. 3 presents a schematic 

llustrating the NN architecture. Inherently, such an NN must nec- 

ssarily be deep NN with more than one hidden layer. In the input 

ayer, x and a set of thermodynamic conditions (e.g., temperature 

 , pressure p, mixture composition X ) are processed with two sep- 

rate sets of NN parameters. The two vectors in the first hidden 

ayer have the same dimension. They are concatenated before feed- 

ng into the next hidden layer to make predictions. The two-tower 

rchitecture makes it easier and more efficient for the extended 

N-RS to learn the dependency on the thermodynamic conditions. 

he first hidden layer for rate parameters reduces the dimensional- 

ty of x ; the second hidden layer enables the thermodynamic con- 

itions processed to interact with key kinetic parameters only. In 

ontrast, directly appending the thermodynamic conditions into an 

N effectively treats T , p and X simply as some new variables, 

eading to a higher dimensional input that makes learning less ef- 

cient. 

The extended NN architecture is best utilized with physical con- 

iderations or insights. For example, for ignition delay, constrain- 

ng the forms of input for T and X following the Lifshitz empirical 

unction [56] not only improves the NN-RS performances within 

he range of thermodynamic conditions considered, it also allows 

or extrapolation to conditions outside of the initial range consid- 

red. This physics-guided NN feature will be specifically presented 

nd discussed in Section 3.3 . 

.6. Implementing neural network in MUM-PCE and for other related 

pplications 

It is evident that the NN-RS can be used for extracting the 

radient ∂ y/∂ x k and hence, the global and local sensitivity coeffi- 

ients, as discussed in Section S3 of the SM. Here we focus our dis- 

ussion on the implementation of NN-RS into MUM-PCE. Details of 

UM-PCE can be found elsewhere [2] , Briefly, MUM-PCE allows for 

onstraining a reaction model to better predict a set of combustion 

roperty targets, and as importantly, reduces model prediction un- 

ertainty via the rate-parameter covariance matrix. We define the 

bjective function as 

( x 

∗) = min 

x 

{ M ∑ 

m =1 

(
y m 

(x ) − y m,obs 

σm,obs 

)
2 + λ|| x || 2 2 

} 

, (8) 

here M is the number of experimental targets. The first term of 

q. (8) is the cost function; it measures the deviation between 

he model prediction y m 

(x ) and the experimental value y m,obs . The 

econd term is the Euclidean norm of the normalized rate param- 

ter x , measuring the distances of the optimized rate parameters 

rom the trial assignments. Each target m is inversely weighted by 

he its experimental uncertainty σm,obs . In the second term, λ is a 

egularization coefficient, governing the weight applied to the re- 

ction kinetics relative to combustion property data. For example, 

n FFCM-1, λ = 4 . 

In the FFCM-1 effort, MUM-PCE implement s the Levenberg- 

arquardt (LM) algorithm [57] to solve the nonlinear least-square 
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Fig. 2. Adaptive training of NN-RS using transfer learning. Left panel: adapting to input parameters due to an added reaction ( x K+1 ) or with a parameter splitting ( x K ) 

splitting into two parameters ( x K and x K+1 ); Right panel: adapting to changes in Arrhenius expressions (highlighted as x 1 and x 5 ). In both case, the parameters in yellow 

circles are initialized randomly to account for changes in the kinetics, while all other parameters in blue circles may be initialized using values from a previous NN-RS. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. A generalized NN-RS architecture that incorporates the thermodynamic conditions as input. For the bottom layer, the normalized reaction rate parameters x (in 

blue) and thermodynamic conditions (eg., temperature T , pressure p and mixture composition X ) (in green) are processed as two separate sets of coefficients. In the second 

layer, the two processed vectors (red) are concatenated (orange) and passed through the third layer (purple) to predict the combustion responses. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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roblem. LM works well for low-dimensional, unbounded prob- 

ems. FFCM-2, however, is an exceptionally higher-dimensional, 

parse problem. We applied the trust region reflective (TRF) algo- 

ithm from the SciPy nonlinear least squares optimizer [58] . TRF 

xplicitly applies the parameter bounds so that the optimized rate 

arameters are more interpretable. The TRF algorithm also requires 

s input the gradient of y , which is available analytically, as dis- 

ussed before. 

The posterior covariance matrix may be obtained by lineariz- 

ng the response surface after optimization [2] . Assuming the rate 

arameters distribute as a multivariate log-normal distribution, we 

epresent the optimized rate parameters x ∗ as 

 

∗ = x 

(0 ) ∗ + x 

(1 ) ∗ξ , (9) 
5 
here ξ ∼ N (0 , 1) is a standard normal random variable; the 

ean x (0) ∗ is the optimized rate parameters. By applying the 

ayes’ theorem with Gaussian prior, the covariance matrix 
∗ is: 

∗ = x 

(1 ) ∗x 

(1 ) ∗T = 

( M ∑ 

m =1 

J m 

T J m 

σ 2 
m,obs 

+ λI 

)
−1 , (10) 

here I is the identity matrix, and J m 

is the Jacobian matrix eval- 

ated at the optimal point 

 m 

= 

∂y 

∂x 

| x = x (0 ) ∗ . (11) 

The prediction uncertainty of the trial or optimized model σ ∗
m 

an then be calculated using polynomial chaos expansions, 

∗
m 

= || J m 

T L || 2 2 + λ|| L T H m 

L || 2 F , (12) 
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here J m 

and H m 

are the Jacobian and Hessian matrix at the op- 

imal point, and L is the Cholesky decomposition of the covariance 

atrix. For the trial model, the covariance matrix is a diagonal ma- 

rix given by 1 
λ

I . For the optimized model, the covariance matrix 

s given by Eq. (10) . For NN-RS with ReLU activation, the second 

erm vanishes because Hessian matrix is zero. 

MUM-PCE evaluates the consistency of reaction model with re- 

pect to the experimental data by calculating the F score of a tar- 

et m as 

 m 

= 

y m,obs − y m,opt 

2 σm 

, (13) 

here y m,opt is the optimized model prediction. A target m is re- 

arded as inconsistent when | F m 

| > 1 . That is, the optimized model

annot reconcile the target within its experimental uncertainty by 

djusting the rate parameters within the uncertainty limits. The in- 

onsistent targets are removed from the target list and the model 

s re-optimized. This process is carried out iteratively until all re- 

aining targets are consistent. The inconsistent targets are usually 

urther examined to understand the source of inconsistency. 

We discuss the workflow of NN-MUM-PCE framework in Sec- 

ion S4 of the Supplementary Material (SM), and highlight several 

ey features here. Unlike the original MUM-PCE [2] , in which ac- 

ive parameters are pre-selected from a linear sensitivity analysis 

or each target and the remaining (inactive) parameters are frozen, 

he current NN-RS, in principle, allows for all rate parameters to be 

erturbed and optimized. While the benefits of this new capability 

ill be illustrated later, freezing unnecessary parameters is useful 

o suppressing noises and produces optimization results that are 

asier to interpret. In NN-MUM-PCE, a parameter x k does not con- 

ribute to improving model prediction or reducing the prediction 

ncertainty if | A k /A k, 0 − 1 | < χx , and when the optimized uncer-

ainty of x k is larger than χσ , where χx is the multiplier threshold, 

nd χσ is the uncertainty threshold. Such a parameter is frozen 

not optimized). Hence, two sets of rate parameters result from 

his procedure, the optimized set x a and the unoptimized set x f . 

e then apply the conditional normal distribution to obtain the 

ean and covariance matrix for x a analytically as 

 ∼ N (μ, �) = N 

([
μa 

μf 

]
, 

[
�aa �af 

�fa �ff 

])
, (14) 

here 

a | x f = μ f 
= μa + �aa �

−1 
ff 

(x f − μf ) , (15) 

a | x f = μf 
= �aa − �af �

−1 
ff 

�fa . (16) 

Suffice it to note that NN-MUM-PCE allows for sequential op- 

imization of combustion reaction models. In this case, all kinetic 

arameters remain active in the NN response surfaces, and which 

ubset of the parameters are to be optimized is specified in the op- 

imization stages. Because of the hierarchical nature of combustion 

hemistry, the prediction uncertainty of a reaction model for the 

ombustion of a larger hydrocarbon fuel relies on an uncertainty- 

inimized model of smaller hydrocarbons. In principle, the se- 

uential optimization strategy allows us to exploit such structures 

nd extend our studies to new fuels readily. 

. Results and discussion 

.1. Comparison of polynomial response to neural network response 

To demonstrate a key advantage of the NN approach, we first 

iscuss the truncation errors in conventional 2 nd -order polynomial 

esponse surfaces. As discussed earlier, 2 nd -order polynomial re- 

ponse surfaces based on a fractional factorial design has a lim- 

ted scalability. The minimal number of training samples required 
6 
s (n 2 + 3 n ) / 2 + 1 , where n is the number of “active” rate param-

ters selected from a sensitivity analysis. Many of the past studies 

ssumed n = 20 [2,4–6] . Fig. 4 shows the truncation errors of three

 = 20 , 2 nd -order polynomial response surfaces, one each selected 

or the laminar flame speed S o u (a stoichiometric C 2 H 2 /air mixture 

t 300 K unburned gas temperature and 1 atm pressure), and the 

gnition delay τign and peak CO mole fraction X CO (1.32% C 2 H 4 - 

.95% O 2 -94.73% Ar, T 5 = 1300 K, p 5 = 15 bar). We tested these

olynomial response surface on two test data sets: one that only 

aries the 20 active parameters (the top row), the other that al- 

ows all 1052 parameters of FFCM-2 to vary (the bottom row). As 

bserved, the polynomial responses are sufficiently accurate within 

he active parameter spaces, but they are grossly inaccurate when 

he initially assumed ”inactive” parameters are varied due to trun- 

ation error. 

As expected, increasing the number of ”active” parameters im- 

roves the performance of the 2 nd -order polynomials. Fig. 5 shows 

he maximum relative error, 95-percentile relative error, and mean 

elative error for the polynomial responses (symbols) built using 

0,0 0 0 sample points, as a function of the number of active pa- 

ameters n considered. In each case, we again used 20 0 0 sample 

oints for testing, and all parameters were allowed to vary. The 

nitial drop of the relative errors from n = 20 to n ≈ 70 to 80 is

aused by the reduction of the truncation errors, and the results 

hown in Fig. 5 suggest that a full consideration of the active pa- 

ameters in response surface development requires from 60 to 80 

ctive parameters, depending on the type of the combustion re- 

ponses. The relative errors exhibit a U-shaped dependence on n . 

or large n values, the errors increase due to bias-variance trade- 

ff for polynomial fittings [54] . 

Another aspect of the problem is the number of samples 

eeded for polynomial and NN-RS training. Fig. 6 compares the 

erformance of a n = 70 , 2 nd -order polynomial and NN-RS in terms 

f the relative errors as we increase the number of the samples 

sed for training. To evaluate the performance, we used an iden- 

ical set of 20 0 0 samples to test all surfaces generated. Further- 

ore, to understand the convergence of the polynomial and NN-RS 

erformance with respect to the training sample size, we repeated 

he training 10 times at each sample size; and each set of sam- 

le is extracted from a full set of Sobol sample of 40,0 0 0 points.

his procedure allows us to derive the mean and standard devi- 

tion of the relative errors of each type of the response surfaces 

ith respect to the training sample size. Fig. 6 shows the perfor- 

ance evolution of the polynomial and NN-RS. Here, we used the 

gnition delay time of a stoichiometric CH 4 / O 2 mixtures diluted in 

7.5% CO 2 ( T 5 = 1374 K, p 5 = 27 . 1 atm) as the example. Several fea-

ures can be observed from Fig. 6 . For sample sizes � 30 0 0 , the

rained surfaces generally have relative errors with large standard 

eviations, thus indicating the lack of convergence at those sizes 

or both type of the surfaces. This is especially true for the NN- 

S; when trained on only 30 0 0 samples, both the errors and its 

pread are rather large. The errors in the 2 nd -order polynomial de- 

ay faster with respect to the sample size. This fast decay rate is 

ertainly associated with its substantially smaller dimension of the 

arameter space ( n = 70 ) than that of the NN-RS with n = 1 , 052 .

lso because of the difference in the dimensionality, the polyno- 

ial is converged with around 15,0 0 0 training points, while the 

N-RS requires more training points to achieve the same accuracy. 

mportantly, the training of this 1052 dimensional NN-RS requires 

nly three to four times more samples than that of the polynomial 

f 70 dimensions. 

The impact of the NN architecture is evaluated next. As shown 

n Fig. 1 , two key parameters define the complexity of an NN. They 

re the number of hidden layers H and the number of the nodes 

ithin each hidden layer m h (h = 1 , . . . , H) . Fig. 7 shows the vari-

tions of ε mean and ε of the NN-RSs as a function of m for a
95% 1 
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Fig. 4. Truncation errors of n = 20 , 2 nd -order polynomial response surfaces for three types of sample combustion responses. For each case, the polynomials were trained on 

20,0 0 0 (Sobol) sample points, and the test data consist of 20 0 0 samples. Top row: testing on data that vary the “active” parameters only; bottom row: testing on data that 

vary all 1052 parameters; Left column: laminar flame speed ( S o u ); middle column: ignition delay time ( τign ); right column: peak CO mole fraction ( X CO ). 

Fig. 5. Relative errors of the 2 nd -order polynomial (open symbols) and neural network (closed symbol) response surfaces for three sample types of combustion response. 

The “active” parameters in the 2 nd -order polynomials are selected based on the ranked local sensitivity ( n < K) for each case, and the NN-RSs allow all parameters to vary 

(i.e., n = K = 1 , 052 ). The dashed lines are drawn to guide the eyes and for comparison with the polynomials. Left: laminar flame speed; middle: ignition delay time; right 

panel: maximum CO mole fraction, under conditions shown in each respective panel. 

Table 1 

NN-RS performance requirements: mean relative errors ε mean and 

maximum 95-percentile relative errors ε 95% allowed for each sub- 

test sets. 

Test set Mean error ( ε mean ) 95-percentile error ( ε 95% ) 

1 ( σ = 0.1) 1% 2% 

2 ( σ = 0.3) 2% 5% 

3 ( σ = 0.5) 3% 10% 
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ingle hidden later ( H = 1) (left panel) and as a function of H for

 fixed m h = 16 for h = 1 , . . . , H (right panel). The example shown

s again the ignition delay time of a stoichiometric CH 4 /O 2 mixture 

iluted in 77.5% of CO 2 at T 5 = 1374 K and p 5 = 27 . 1 atm. Here, all

 = 1052 rate parameters were considered, and the training sample 

et is held the same, with 60,0 0 0 training points. The tests shown

n Fig. 7 were made with Test set 2 ( Table 1 ) with 20 0 0 points. It is

een that as we increase the number of nodes in a single hidden- 

ayer NN, the errors first decrease until m ≈ 50 and then it in- 
1 

7 
reases for 50 < m 1 < 64 . For m 1 > 64 , the performance of the NN-

S improved again as m 1 increases. This complex, double-descent 

ehavior has been discussed in [59] . Briefly, the worst choice for 

n NN is when K × m 1 is approximately equal to the training sam- 

le size. More accurate NNs are typically those that are either 

nder-parameterized or over-parameterized. Although an NN with 

2 nodes gives more accurate results, the larger number of nodes 

ranslates into great computational demand. For this reason and 

onsidering the accuracy requirements listed in Table 1 , we opt 

or 16 nodes in our base-case NN. The right panel of Fig. 7 shows

he relative errors of four NNs, varying the number of hidden lay- 

rs from H = 1 to H = 4 , while keeping the number of nodes at

6 for each hidden layer. Clearly, the impact of H on the per- 

ormance of the NN-RS is, by all means, mild. It is for this rea- 

on that we employ a single hidden-layer NN as our base case 

tudy. 

Note that the analysis also provides key insight about the num- 

er of training sample points for NN development. For polynomial 

esponses, the minimum number of training samples required can 
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Fig. 6. Variations of the relative errors, comparing 2 nd -order polynomial with n = 70 and NN-RSs with n = 1052, as a function of the sizes of the training set, using ignition 

delay time of a stoichiometric CH 4 / O 2 mixtures diluted in 77.5% CO 2 ( T 5 = 1374 K, p 5 = 27 . 1 atm) as the example. The test sample size is 2,0 0 0. Symbols represent the errors 

evaluated for the response surfaces trained on several randomly selected training samples, and lines and error bars are the mean error and its standard deviation at each 

training sample size. 

Fig. 7. Variations of the relative errors of a single hidden-layer NN (left) as a function of the number of nodes m 1 and of single-versus-multi-hidden layer NNs (right), all 

with 16 nodes, as a function of the number of hidden layers, H, using ignition delay time of a stoichiometric CH 4 / O 2 mixtures diluted in 77.5% CO 2 ( T 5 = 1374 K, p 5 = 

27.1 atm) as the example. The training sample size is 60,0 0 0; tests use Set 2 ( Table 1 ) with 20 0 0 sample points. 
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e calculated, as discussed before. For NNs, there is not a deter- 

inistic approach yet, because the performance of NNs depend on 

any more factors. Yet, one of the key factors is the initialization 

f NN parameters. We will show in Section 3.2 that a good ini- 

ialization can significantly reduce the number of training samples 

eeded. 

To briefly summarize, the advantage of NN is that even though 

ts training may require a larger training sample set, a single 

idden-layer, 16-node NN-RS is particularly attractive to handling 

arge models; and without having to pre-select active parame- 
8

ers, this NN approach is highly scalable for response surface 

eneration. 

.2. Adaptive NN training 

The increased computational demand for NN training may be 

lleviated by adaptive training, which uses the NN parameters of 

n trained NN as the initial input to the training of a new NN for a

elated set of input parameters or thermodynamic conditions. The 

eason why adaptive training increases the training efficiency of 
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Fig. 8. Selected thermodynamic conditions for adaptive training using the NN al- 

ready trained for the ignition delay of a stoichiometric CH 4 / O 2 /77.5% CO 2 mixture 

at the nominal p 5 and T 5 condition marked by the center star. Three sets of new 

conditions are tested with each set containing the variations of both p 5 and T 5 . The 

set closest to the nominal condition is denoted as set A i ; the intermediate set is B i ; 

the furthest set is C i ( i = 1 , . . . 4 ), which extends p 5 from 12.3 atm to 87.4 atm, and 

of T 5 from 1,218 K to 1,705 K. 
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Fig. 9. Comparison of mean (open symbols) and 95-percentile (filled symbols) errors a

training (solid lines) and without adaptive training (dashed lines) for the three sets of c

shown in Fig. 8 . The horizontal dashed-dotted-dashed lines indicate the mean and 90-pe

Lines are drawn to guide the eyes. 

9 
ew NN is clear. The NN parameters implicitly contains the sen- 

itivity information. As long as the sensitivity is similar, the al- 

eady trained NN contains ”prior” knowledge that must be useful 

o training related NNs. 

Here, we demonstrate adaptive training on several examples. In 

he first example, we use the ignition delay time of a stoichio- 

etric CH 4 - O 2 -77.5% CO 2 mixture, and define the center star of 

ig. 8 as the nominal p 5 (32.8 atm) and T 5 (1421 K) condition. We 

xamine adaptive training efficiencies of the neighboring points 

ver the ranges of p 5 from 12.3 atm to 87.4 atm, and of T 5 from

,218 K to 1,705 K, also shown in Fig. 8 . Fig. 9 shows the rates

f convergence of the NNs for each condition, comparing adaptive 

raining using the NN parameters obtained at the nominal condi- 

ion and direct training without using the prior knowledge. For all 

ondition sets, the adaptive training (solid lines) always yield faster 

onvergence than without adaptive (dashed lines). If we examine 

he tolerable mean and 95-percentile errors corresponding to the 

et 2 test data (see, Table 1 and the horizontal dash-dotted-dash 

ines of Fig. 9 ), the NNs of the closest neighbors of the nominal

ondition (Set A) are sufficiently accurate when adaptively trained 

n only 400 samples. Without adaptive training, the NNs require 

bout 10,0 0 0 training samples to achieve the same accuracy. As ex- 

ected, the efficiency of adaptive training decreases for set C with 

p 5 and T 5 values being furthest from the nominal condition. Even 

o, adaptive training is always preferable, as it can be seen in the 

ottom row of Fig. 9 . 

Next, we consider two examples in which new rate parameters 

re adapted into the base-case NN. The first test case is the ig- 

ition delay time of a stoichiometric C 2 H 6 / O 2 mixture diluted in 

1% argon with T 5 = 1434 K and p 5 = 7 . 56 atm. The base NN does

ot consider the Chaperon efficiency of Ar in the reaction C 2 H 4 + 

 (+M) � C 2 H 5 (+M) separately form those of other third bodies. 
s a function of the number of samples used for NN training, comparing adaptive 

onditions (A i : top panels, B i : middle panels, and C i : bottom panels, for i = 1 , . . . 4 ) 

rcentile error tolerance levels. Tests use Set 2 of Table 1 with 20 0 0 sample points. 
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Fig. 10. Projections of a generalized NN-RS of the laminar flame speed of CH 3 OH /air mixtures ( T 0 = 298 K, p = 1 atm and 0 . 6 ≤ φ ≤ 1 . 8 ). The NN-RS, given as y S ◦u (x , T 0 , p, φ) , 

covers the ranges of thermodynmaic conditions of 298 K ≤ T 0 ≤ 450 K, 0 . 5 ≤ p ≤ 10 bar, and 0 . 6 ≤ φ ≤ 1 . 8 , and rate parameters x = [ x 1 , . . . , x K ] 
T , where K = 1052) On the 

S ◦u − φ planes, symbols are experimental data under the same T 0 = 298 K and p = 1 atm condition: ♦ Bardin et al. [62] ; Davis and Law [63] ; Egolfopoulos et al. [64] ; 

� Guelder [65] ; � Katoch et al. [66] ; � Metghalchi and Keck [67] ; � Sileghem et al. [68] ; Saeed and Stone [69] ; Vancoillie et al. [70] ; Voss et al. [71] . The outer 

axes show limiting rate values for reactions H + O 2 � O + OH and CO + OH � CO 2 + H . In each panel, NN-RS predictions are projected to the S ◦u − φ planes to illustrate 

the nominal model prediction (solid line) and model uncertainty (dashed lines) caused by the rate uncertainty of CH 3 OH + OH � CH 3 O + H 2 O under each condition. 
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uppose that later it is realized that the Chaperon efficiencies of Ar, 

 2 and H 2 O must be treated separately in optimization against the 

gnition delay (in argon) and laminar flame speed (in N 2 , where M 

 H 2 O exerts a notable impact on the flame speed). Splitting M 

nto M = Ar, M = H 2 O and M = Ar and all other species forms

n extended NN, which needed only 40 0 0 samples or 10% of those 

n the base case for its training. Table S1 of the SM provides com- 

arisons of the ranked first-order sensitivity coefficients calculated 

y the brute force method with those evaluated from the NN-RS 

daptively trained and the NN-RS without adaptive training. The 

esults are nearly identical. In the second case, we consider reac- 

ion model updates focusing on the iso -butene sub-model. A to- 

al of 13 iso -butene related reactions were updated from the orig- 

nal FFCM-2 trial model, including the H-abstraction by O 2 of i - 

 4 H 8 by considering recent theoretical calculation [60] and low- 

emperature rate measurements [61] . We used the ignition delay 

ime of 2% iso -butene ( i - C 4 H 8 )-12% O 2 diluted in Ar at T 5 = 1556 K

nd p 5 = 1 . 7 atm as the test case. Adaptive NN training required

2,0 0 0 training samples (about 30% of the original training data) 

o achieve the same accuracy of the base case NN. The ranked sen- 

itivity coefficients differ significantly before and after the rate up- 

ates, as it can be seen in Table S2, because of the updates led to

eaction pathway changes during i - C 4 H 8 oxidation. Yet, the signifi- 

antly reduced number of training samples indicate useful knowl- 

dge transfer from the base-case NN to the adapted NN, which 
10 
omes from key reactions beyond the i - C 4 H 8 submodel, including 

 + O 2 � O + OH and CH 3 + HO 2 � CH 3 O + OH . 

.3. Generalized NN-RS 

The generalized NN architecture that considers both rate pa- 

ameters and thermodynamic conditions has been illustrated in 

ig. 3 . Here we illustrate the utility of this NN architecture again 

sing several examples. In the first example, we demonstrate an 

N-RS for the laminar flame speed of methanol-air mixtures, 

 S ◦u = y S ◦u (x , T 0 , p, φ) , (17) 

here T 0 is the unburned gas temperature (298 K ≤ T 0 ≤ 450 K), 

p is the pressure ( 0 . 5 ≤ p ≤ 10 bar), and φ is the equivalence ra-

io ( 0 . 6 ≤ φ ≤ 1 . 8 ). Here, x = [ x 1 , . . . , x K ] 
T , where K = 1052, as dis-

ussed before. 60,0 0 0 total samples were created using Sobol se- 

uences, by jointly perturbing the rate parameters x and the ther- 

odynamic conditions T , p and φ. Fig. 10 show several projec- 

ions of the generalized NN-RS in four dimensions, showing the 

ariation of the laminar flame speed as a function of φ and the 

ate coefficient of CH 3 OH + OH � CH 3 O + H 2 O . Each panel cor- 

esponds to a two-standard deviation value of the rates ( x = ±1 )

or H + O 2 � O + OH or CO + OH � CO 2 + H , all evaluated for

 0 = 298 K and p = 1 atm. Also shown on the S ◦u − φ planes are

he experimental data reported under the same T and p condi- 
0 
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Fig. 11. Generalized NN-RS for ignition delay times of CH 4 - O 2 mixtures diluted in X CO 2 = 75% - 95% for initial temperature T 5 = 1250 − 1750 K, pressure p 5 = 1 − 100 atm, 

equivalence ratio φ = 0 . 5 − 2 . 0 . Demonstrated here are ignition delay of a 3.91% CH 4 -9.92% O 2 - CO 2 mixture at p 5 = 31 . 5 atm. Symbols are experimental data [72] . The x - and 

y -axes vary the A -factors of reactions CH 3 + O2 � CH 2 O + OH and CH 2 O + O 2 � HCO + HO 2 , respectively. In each panel, NN-RS predictions were projected to illustrate the 

prediction uncertainty caused by the rate uncertainty of the reaction CH 3 + HO 2 � CH 3 O + OH of the trial FFCM-2 reaction model. 
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conditions. 
ions, over a range of equivalence ratios. On the same planes, we 

roject three S ◦u profiles evaluated from the generalized NN-RS us- 

ng the nominal rate value x = 0 for CH 3 OH + OH � CH 3 O + H 2 O

solid lines), and using x = ±1 of the same reaction (dashed lines). 

t can be seen that such plots and hence the underlying NN-RS 

re useful to quantifying the impact of rate parameters of a re- 

ction model on the combustion property this model attempts to 

redict. 

Further, we considered ignition delay times of CH 4 − O 2 mix- 

ures diluted in X CO 2 
= 75% - 95% for initial temperatures T 5 = 

250 K to 1750 K, pressures p 5 = 1 atm to 100 atm and equiv-

lence ratios φ = 0 . 5 to 2.0. We created 20 0,0 0 0 uniform Sobol

amples jointly for the rate parameters x ( K = 1052) and the ther- 

odynamic conditions T , p, X CO 2 
and φ within the range speci- 

ed. For x , the uniform Sobol samples were converted to trun- 

ated normal distributions as discussed in previous section. Un- 

er all conditions, the generalized NN-RS was found to perform as 

ell as those trained under each thermodynamic condition. Each 

anel in Fig. 11 shows the τign projections of the generalized NN- 

S in 1 /T 5 and the rate of CH 3 + HO 2 � CH 3 O + OH , evaluated for

 3.91% CH 4 -9.92% O 2 − CO 2 mixture at p 5 = 31 . 5 atm at four ex-

reme rates of x = ±1 for reactions CH 2 O + O 2 � HCO + HO 2 and

H 3 + O 2 � CH 2 O + OH. Again shown in the τign versus 1 /T 5 planes 

re the corresponding experimental data, and the model predic- 

ions for x = 0 (solid lines) and x = ±1 (dashed lines) of CH 3 + HO 2 

CH 3 O + OH . 

Another way to assess the accuracy of the generalized NN-RS is 

y comparing the ignition delays plotted using the Lifshitz correla- 

ion fitting by 

ign = AT n exp 

(
B 

T 

)
[ CH 4 ] 

α[O 2 ] 
β [ CO 2 ] 

γ . (18) 
11 
ig. 12 compares the correlation of Lifshitz correlation fitting using 

omputer experiments using the unoptimized FFCM-2 on 10,0 0 0 

amples of thermodynamic conditions for CH 4 - O 2 mixtures di- 

uted in X CO 2 
= 75% − 95% with initial temperature T 5 = 1250 K to

750 K, pressure p 5 = 1 atm to 100 atm and equivalence ratios 

= 0 . 5 to 2.0. We carried out regression analyses and obtained 

he 6 coefficients A , n , B , α, β , γ of Eq. (18) from these 10,0 0 0

amples, varying the rate coefficient of reaction R123 ( CH 3 + HO 2 

CH 3 O +OH) from its nominal value of x = 0 to the 2 σ values of

 = 1 and x = −1 . The results are shown as solid lines in Fig. 12 ,

here the error bars indicate the 2 σ standard deviation of the fit. 

sing the generalized NN-RS, we also plot its predictions for the 

ame 10,0 0 0 samples as symbols and the shaded bands, which in- 

icates the 2 σ band of the symbols. Clearly, the results shown in- 

icate that the NN-RS is accurate in both the nominal values and 

heir uncertainties over the broad range of thermodynamic and 

ixture conditions tested. 

The pros and cons of the NN-RS under single thermodynamic 

ondition and under more generalized thermodynamic conditions 

re quite obvious. When multiple thermodynamic conditions are 

elected as optimization targets, the use of a generalized NN-RS 

an reduce the total number of training samples significantly. How- 

ver, a generalized NN-RS is deeper and has more parameters; 

t requires more training efforts, and more hyper-parameter tun- 

ng. In contrast, a simple NN-RS under one thermodynamic con- 

ition is smaller in its parameter size; requires a fewer num- 

er of training samples. As a result, the training process is eas- 

er to automate, as minimal hyper-parameter tuning is needed. 

n practice, simple NN-RSs are preferred when there are only 

ew optimization targets to considered, and when the condi- 

ions are lightly correlated; the generalized NN-RS is more de- 

irable for large-scale optimization with heavily correlated target 
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Fig. 12. Lifshitz correlations of the ignition delay time for CH 4 - O 2 mixtures diluted in X CO 2 = 75% − 95% for initial temperature T 5 = 1250 K to 1750 K, pressure p 5 = 1 atm 

to 100 atm and equivalence ratios φ = 0 . 5 to 2.0. The solid lines are from regression of computer experiments using the trial FFCM-2 reaction model predictions varying the 

normalized rate coefficient of reaction R123 ( CH 3 + HO 2 � CH 3 O + OH ) from its nominal value of x = 0 to the 2 σ values of x = 1 and x = −1 . The error bars indicate the 

95% confidence interval ( 2 σ standard deviation) of the regression fits. Symbols and shaded bands are calculated from the generalized NN-RS under respective conditions. 
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.4. Optimization case study: FFCM-1a 

In this section, we demonstrate the NN-MUM-PCE approach 

ith a case study that optimizes the trial FFCM-2 and minimizes 

he model uncertainty using only the target set of FFCM-1 (a sub- 

et of FFCM-2). The 146 FFCM-1 targets covered the laminar flame 

peed, ignition delay time, and selected speciation data in shock 

ubes and flow reactors for H 2 , syngas, CH 2 O and CH 4 [26] . The re-

ulting optimized model is termed FFCM-1a. With everything else 

eing kept equal, the FFCM-1a optimization differs in two aspects 

rom that of FFCM-1. For each optimization target, the truncated 

0-parameter 2 nd -order polynomial response surface in FFCM-1 

as replaced with an NN-RS that allows all parameters to vary. 

he sample size was 10,0 0 0 for laminar flame speeds and 40,0 0 0

or the ignition delay and species concentrations. We trained each 

N-RS separately. The adaptive training technique and the gener- 

lized NN-RS architecture were not used in the current case study. 

lso differing from the FFCM-1 optimization was that the current 

ptimization uses a trust region reflective (TRF) algorithm as op- 

osed to the Levenberg-Marquardt algorithm used earlier [26] . For 

his specific case, the computational cost is discussed in Section S5 

f the Supplementary Material (SM). Because FFCM-2 considers re- 

ctant fuels up to the size of C 4 and the FFCM-1 targets include 

 0 −1 fuels only, many rate parameters and their uncertainties in 

FCM-2 cannot be constrained by the FFCM-1 target set. And as 

xpected, we found in an initial optimization run that many rate 

arameters see noise-level perturbations, and their 2 σ uncertainty 

actor remain to be large. Hence, two threshold values were de- 

ned: the rate perturbation multiplier threshold χx and the rate 

 σ uncertainty perturbation threshold χ2 σ . If after optimization a 

ate parameter has multiplier close to unity | A k /A k, 0 − 1 | < χx and

ts 2 σ uncertainty remains to be larger than χ2 σ , the rate param- 

ter is deemed inactive and hence frozen. In this way, the rate 

arameters that cannot be constrained by the target set return to 

heir nominal values, as discussed in Eq. (15) and Eq. (16) . 

Appropriate threshold values were studied in a parametric 

tudy. An example is shown in Fig. 13 for a fixed value of χ2 σ =
12 
.96. As expected, an increase in χx leads to an initial rapid de- 

rease in the number of active parameters that needs to be con- 

idered but the value of the cost function (e.g., the first term of 

q. (8) ) increases only marginally. The parametric study suggests 

hat χA = 0 . 05 is appropriate because the cost function value in- 

reases by 3.5% but the number of active parameters dropped by 

3%, from 1052 to 72. These threshold values were used in FFCM- 

a optimization. 

Summary results of the trial and optimized models are shown 

n several 45 ◦ diagonal plots of Fig. 14 , comparing the perfor- 

ances of the reaction models before and after optimization 

gainst the target data values, and between the current FFCM-1a 

the left two columns) and the original FFCM-1 (the right two 

olumns). Three types of target data are plotted: the laminar flame 

peeds (top panels), shock tube ignition delays (middle panels), 

nd species related targets (bottom panels). As it can be seen, the 

ptimized FFCM-1a show improved predictions against the target 

xperimental data, and in general, the maximum and RMS errors 

re reduced from the unoptimized FFCM-2 trial model to the op- 

imized FFCM-1a model. Of equal importance is the model pre- 

iction uncertainties, calculated using Eq. (12) , are reduced sig- 

ificantly, as demonstrated by the reduced error bar sizes of the 

odel predictions. Comparing the plots in the second and fourth 

olumns of Fig. 14 , we also found that the performance of FFCM- 

a is nearly identical to that of FFCM-1. 

To further illustrate the effectiveness of the current NN-MUM- 

CE approach, we plot in Fig. 15 three sample model valida- 

ion sets, from the laminar flame speed of methane-air mixtures 

t 1 atm pressure and 298 K over a range of equivalence ratio 

left column), the ignition delay of a 4.5% CH 4 -19.1% O 2 -Ar mix- 

ure at 1.96 atm (middle column), and the CH 3 time history pro- 

le of methane oxidation (0.2% CH 4 -0.1% O 2 -Ar at 1.02 atm and 

264 K) (right column). From the unoptimized FFCM-2 (top pan- 

ls) to the optimized FFCM-1a (bottom panels), we see that a) 

he nominal predictions of the optimized model are improved no- 

ably for the ignition and CH 3 species profile targets, and b) as 

mportantly, the prediction uncertainties of the optimized FFCM- 
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Fig. 13. Parametric study of the cost function (the first term of Eq. (8) ) and the number of active parameters as a function of the rate threshold χx for FFCM-1a optimization. 

The uncertainty threshold χ2 σ value is fixed at 0.96. 

Fig. 14. Trial and optimized model predictions and their 2 σ uncertainties for the laminar flame speed (top panels), shock tube ignition delay (middle panels) and selected 

species concentration (bottom panels) compared to experimental data and their 2 σ uncertainty. Left two columns: FFCM-1a; right two columns: FFCM-1 [26] . In each panel 

the maximum and RMS errors of the model and experiment are indicated. 

13 
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Fig. 15. Model predictions of unoptimized FFCM-2 (top panels) and optimized FFCM-1a (bottom panels) and respective experimental data (symbols). Left panels: laminar 

flame speed of methane-air at 1 atm and 298 K (symbols: 	 Aung et al. [73] ; Bosschaart and de Goey [74] ; Egolfopoulos et al. [75] ; � Hassan et al. [76] ; � Halter 

et al. [77] ; � Kobayashi et al. [78] ; � Lowry et al. [79] ; Park et al. [80] ; + Rozenchan et al. [81] ; Vagelopoulos and Egolfopoulos [82] ; Yu et al. [83] ; Zhu 

et al. [84] ); middle panels: ignition delay time of a 4.5% CH 4 -19.1% O 2 -Ar mixture at 1.96 atm (experimental data taken from ( [85] ); right panels: species time-history of CH 3 

during shock tube oxidation of methane (0.2% CH 4 -0.1% O 2 -Ar) at 1.02 atm and 2264 K (experimental data taken from [86] ). The dashed lines and shaded areas in the top 

panels are the trial model predictions and their 2 σ uncertainty band; the solid lines and shade areas in the bottom panels are the corresponding results of the optimized 

FFCM-1a. The symbols marked by the error bars are the experimental targets and their 2 σ uncertainties; they are parts of the FFCM-1 target set. 
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a are reduced significantly for each of the targets shown in 

ig. 15 . 

. Conclusions 

In this work, we explored the neural network approach to con- 

tructing response surfaces for reaction model optimization and 

ncertainty minimization. The study was motivated by the recent 

FCM-2 effort. Compared to the earlier FFCM-1 effort, the param- 

ter dimensionality and the target set size of FFCM-2 are signif- 

cantly larger. As a result, the earlier response surface approach 

sing 2 nd -order polynomials shows poor accuracy, efficiency and 

calability. Key observations and conclusions are summarized be- 

ow: 

1. For large reaction model optimization, the polynomial response 

surface approach gives poor accuracy because of the need to 

define a set of active rate parameters, leading to significant 

truncation error. 

2. In comparison, the neural network approach is found to be sig- 

nificantly more accurate, scalable and efficient than the poly- 

nomial response approach. The NN approach removes the need 

to define active parameters, thus eliminating the truncation er- 

rors; a shallow NN with only one hidden layer can handle over 

10 0 0 rate parameters as input variables, and a deep neural net- 

work enables the development of generalized NN response sur- 

faces that consider both the rate parameters and thermody- 

namic and mixture conditions as the input variables. 

3. We examined a various of NN features and explored optimal 

NN architectures for the response surface problems of relevance 

to reaction model optimization and uncertainty minimization, 

and demonstrated how adaptive NN training can improve the 

training efficiency. 

4. We showed how the NN can be incorporated into the Method 

of Uncertainty Minimization using Polynomial Chaos Expan- 

sions (MUM-PCE), and demonstrated the resulting NN-MUM- 

PCE approach to the optimization of FFCM-1a, using FFCM-2 as 
14 
the base trial reaction model and the FFCM-1 target set for op- 

timization and uncertainty minimization. 

The analyses and results discussed herein suggest that the neu- 

al network approach is robust and particularly suited for the op- 

imization and uncertainty minimization of large reaction models. 
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