Rui XU

380 Roth Way, Keck Science Building – Stanford, CA 94305 ⊠ ruixu@stanford.edu • 1 Personal Website: ruixucomp.github.io Google Scholar | Twitter | Linkedin

Research Interests

My research aims to enable sustainable aerospace propulsion through multiscale reacting flow modeling that integrates *ab initio* molecular simulation, chemical kinetic modeling, and turbulence-resolved flow simulations, with the aid of data-driven methods. Specifically, I am interested in sustainable aviation fuel combustion modeling and design pathways, and the underlying reacting flow physics in both current propulsion devices and future carbon-neutral, high-speed vehicles.

Professional Appointments

Postdoctoral Scholar, Stanford University , Stanford, CA, USA <i>Department of Chemistry and the PULSE Institute</i>	2020 – present Advisor: Todd J. Martínez
Postdoctoral Scholar, Stanford University , Stanford, CA, USA Department of Mechanical Engineering	2019 – 2020 Advisor: Hai Wang
Education	
Stanford University , Stanford, CA, USA <i>Ph.D., Mechanical Engineering.</i> GPA: 4.1/4.0 Thesis: HyChem – A physics-based approach to modeling real-fuel combustion	2014 – 2019 Advisor: Hai Wang chemistry [Link]
Northwestern University , Evanston, IL, USA <i>M.S., Mechanical Engineering</i> . GPA: 4.0/4.0	2012 - 2014
Shanghai Jiao Tong University , Shanghai, China B.S., Mechanical Engineering. GPA: 90.4/100.0, Rank: 1/87	2008 - 2012

Research Experience

Postdoctoral Scholar, Stanford University, Stanford, CA, USA	2020 – present
Department of Chemistry and the PULSE Institute	Advisor: Todd J. Martínez

• Research direction 1: Quantum chemistry reaction discovery for reacting flows

- Combining *ab initio* molecular dynamics with chemical kinetic modeling in the *ab initio* nanoreactor for fuel combustion, sustainable aviation fuel design, and emission prediction
- Developing enhanced sampling approaches for efficient computational reaction discovery
- Exploring non-equilibrium thermodynamics and plasma chemistry in the *ab initio* nanoreactor
- Research direction 2: Multiscale modeling for energy harvesting materials
 - Modeling photo- and mechanical-energy harvesting materials at multiscales
 - Exploring chemistry and mechanics interaction in stress-responsive materials.
 - Investigating photochemistry of diarylethene using nonadiabatic *ab initio* moleculary dynamics.
- Leadership: Leading monthly meetings and theory lectures of the nanoreactor/machine learning and the excited state dynamics subgroup with the approximate size of 15 people.

Postdoctoral Scholar, Stanford University, Stanford, CA, USA

Department of Mechanical Engineering

- Research direction 1: Bridging reduced kinetic models with 3D turbulent modeling
 - Developed an ultra-reduced methane combustion kinetic model for high-speed turbulent combustion modeling, including direct numerical simulation (DNS), large-eddy simulation (LES), and one-dimensional turbulence (ODT) modeling.
- Research direction 2: Energy materials study using density functional theory (DFT)
 - DFT study of sodium-sulfur battery electrochemistry in collaboration with experimentalists
 - Computational study of interactions between polycyclic aromatic hydrocarbons and metal ions

Graduate Research Assistant, Stanford University, Stanford, CA, USA	2014 - 2019
Department of Mechanical Engineering	Advisor: Hai Wang

- Research direction: Physics-based combustion chemistry model for liquid propulsion fuel
 - Developed and implemented a hybrid chemistry (HyChem) approach for combustion chemistry modeling of liquid propulsion and ground transportation fuels, including conventional jet fuels, sustainable aviation fuel, rocket propellants, and gasolines
 - Extended the HyChem approach emission modelings such as NO_x and soot (particulate matters)
 - Applied HyChem combustion chemistry models to LES under real engine operating conditions.

Honors and Awards

Wiley Computers in Chemistry Outstanding Postdoc Award, ACS Spring 2024	
AFOSR Scholar Award, ACTC (American Conference on Theoretical Chemistry) 2022	
Combustion Institute Student Travel Award, 11th U.S. National Meeting on Combustion	
NSF Student Award, 37 th International Symposium on Combustion	
Combustion Institute Student Travel Award, 10 th U.S. National Meeting on Combustion	
Graduation with highest distinction (Rank 1/87), Shanghai Jiao Tong University	
National Scholarship, China Ministry of Education & Shanghai Jiao Tong University	

Publications

Journal Articles

Google Scholar | Corresponding author = *

- 23. <u>R. Xu</u>^{*}, S.S. Dammati, X. Shi, E.S. Genter, Z. Jozefik, M.E. Harvazinski, T. Lu, A.Y. Poludnenko, V. Sankaran, A.R. Kerstein, H. Wang^{*}, Modeling of high-speed, methane-air, turbulent combustion, Part II. Reduced methane oxidation chemistry, *Combustion and Flame*, 263, 113380, 2024.[*Link*]
- 22. Z. Jozefik, M.E. Harvazinski^{*}, V. Sankaran, S.S. Dammati, A.Y. Poludnenko, T. Lu, A.R. Kerstein, <u>R. Xu</u>, H. Wang, Modeling of high-speed, methane-air, turbulent combustion, Part I. Onedimensional turbulence modeling with comparison to DNS, *Combustion and Flame*, 263, 113379, 2024.[*Link*]
- Y. Zhang, W. Dong, <u>R. Xu</u>, H. Wang^{*}, Foundational Fuel Chemistry Model 2 *iso*-Butene chemistry and application in modeling alcohol-to-jet fuel combustion, *Combustion and Flame*, 259, 113168, 2024.[*Link*]

- A.M. Chang, J. Meisner, <u>R. Xu</u>, T.J. Martínez^{*}, Efficient acceleration of reaction discovery in the *ab initio* nanoreactor: Phenyl radical oxidation chemistry, *The Journal of Physical Chemistry A*, **127**, 9580-9589, 2023.[*Link*]
- **19.** <u>**R**. Xu</u>, J. Meisner, A.M. Chang, K.C. Thompson, T.J. Martínez^{*}, First principles reaction discovery: From the Schrodinger equation to experimental prediction for methane pyrolysis, *Chemical Science*, **14**, 7447-7464, 2023.[*Link*][*Featured in Chem. Sci. front cover*]
- **18.** Y. Zhang, W. Dong, L.A. Vandewalle, <u>**R. Xu**</u>, G.P. Smith, H. Wang^{*}, Neural network approach to response surface development for reaction model optimization and uncertainty minimization, *Combustion and Flame*, **251**, 112679, 2023.[*Link*]
- **17.** N. Kateris, **<u>R. Xu</u>**, H. Wang^{*}, HOMO-LUMO energy gaps of complexes of transition metals with single and multi-ring aromatics, *Combustion and Flame*, **257**, 112513, 2023.[*Link*]
- **16.** J. Crane, X. Shi^{*}, **<u>R. Xu</u>**, H. Wang, Natural gas versus methane: ignition kinetics and detonation limit behavior in small tubes, *Combustion and Flame*, **237**, 111719, 2022.[*Link*]
- **15.** C. Wang, Y. Zhang, Y. Zhang, J. Luo, X. Hu, E. Matios, J. Crane, <u>**R. Xu**</u>, H. Wang^{*}, W. Li^{*}, Stable sodium-sulfur electrochemistry enabled by phosphorus-based complexation, *Proceedings of the National Academy of Sciences*, **118**, e2116184118, 2021.[*Link*]
- <u>R. Xu</u>^{*}, H. Wang, A physics-based approach to modeling real-fuel combustion chemistry VII. Relationship between speciation measurement and reaction model accuracy, *Combustion and Flame*, 224, 126-135, 2021.[*Link*]
- **13.** K. Wang, <u>**R. Xu</u>**, C.T. Bowman^{*}, H. Wang, Impact of vitiation on flow reactor studies of jet fuel combustion chemistry, *Combustion and Flame*, **224**, 66-72, 2021.[*Link*]</u>
- <u>R. Xu</u>, C. Saggese, R. Lawson, A. Movaghar, T. Parise, J. Shao, R. Choudhary, J. Park, T. Lu, R.K. Hanson, D.F. Davidson, F.N. Egolfopoulos, A. Aradi, A. Prakash, V.R.R. Mohan, R. Cranknell, H. Wang^{*}, A physics-based approach to modeling real-fuel combustion chemistry – VI. Predictive kinetic models of gasoline fuels, *Combustion and Flame*, 220, 475-487, 2020.[*Link*]
- **11.** C. Saggese, K. Wan, <u>**R. Xu</u>**, Y. Tao, C.T. Bowman, J. Park, T. Lu, H. Wang^{*}, A physics-based approach to modeling real-fuel combustion chemistry V. NO_x formation from a typical Jet A, *Combustion and Flame*, **212**, 270-278, 2020.[*Link*]</u>
- **10.** <u>**R.** Xu</u>^{*}, H. Wang, Principle of large component number in multicomponent fuel combustion a Monte Carlo study, *Proceedings of the Combustion Institute*, **37**, 613-620, 2019.[*Link*]
- **9.** X. Han, M. Liszka, **R. Xu**, K. Brezinsky, H. Wang^{*}, A high pressure shock tube study of pyrolysis of real jet fuel Jet A, *Proceedings of the Combustion Institute*, **37**, 189-196, 2019.[*Link*]
- 8. K. Wang, <u>R. Xu</u>, T. Parise, J. Shao, A. Movaghar, D.J. Lee, J. Park, Y. Gao, T. Lu, F.N. Egolfopoulos, D.F. Davidson, R.K. Hanson, C.T. Bowman, H. Wang^{*}, A physics-based approach to modeling real-fuel combustion chemistry IV. HyChem modeling of combustion kinetics of a bio-derived jet fuel and its blends with a conventional Jet A, *Combustion and Flame*, **198**, 477-489, 2018.[*Link*]
- 7. Y. Tao, <u>R. Xu</u>, K. Wang, J. Shao, S.E. Johnson, A. Movaghar, X. Han, J. Park, T. Lu, K. Brezinsky, F.N. Egolfopoulos, D.F. Davidson, R.K. Hanson, C.T. Bowman, H. Wang^{*}, A physics-based approach to modeling real-fuel combustion chemistry III. Reaction kinetic model of JP10, *Combustion and Flame*, **198**, 466-476, 2018. [*Link*]

- 6. <u>R. Xu</u>, K. Wang, S. Banerjee, J. Shao, T. Parise, Y. Zhu, S. Wang, A. Movaghar, D.J. Lee, R. Zhao, X. Han, Y. Gao, T. Lu, K. Brezinsky, F.N. Egolfopoulos, D.F. Davidson, R.K. Hanson, C.T. Bowman, H. Wang^{*}, A physics-based approach to modeling real-fuel combustion chemistry II. Reaction kinetic models of jet and rocket fuels, *Combustion and Flame*, **193**, 520-537, 2018.[*Link (featured in the most cited CNF articles collection since 2018)*]
- 5. H. Wang^{*}, <u>R. Xu</u>, K. Wang, C.T. Bowman, R.K. Hanson, D.F. Davidson, K. Brezinsky, F.N. Egolfopoulos, A physics-based approach to modeling real-fuel combustion chemistry – I. Evidence from experiments, and thermodynamics, chemical kinetic, and statistical considerations, *Combustion and Flame*, **193**, 502-519, 2018.[*Link (featured in the most cited CNF articles collection since 2018)*]
- **4.** L. Esclapez^{*}, P. Ma, E. Mayhew, **<u>R. Xu</u>**, S. Stouffer, T. Lee, H. Wang, M. Ihme^{*}, Fuel effects on lean blow-out in a realistic gas turbine combustor, *Combustion and Flame*, **181**, 82-99, 2017.[*Link*]
- **3.** C. Liu, R. Zhao, <u>**R. Xu</u>**, F.N. Egolfopoulos, H. Wang^{*}, Binary diffusion coefficients and non-premixed flames extinction of long-chain alkanes, *Proceedings of the Combustion Institute*, **36**, 1523-1530, 2017.[*Link*]</u>
- **2.** Z. Zhang, H. Ren, <u>**R. Xu**</u>, N. Moser, J. Smith, E.E. Ndip-Agbor, R. Malhotra, Z.C. Xia, K.F. Ehmann^{*}, J. Cao^{*}, A mixed double-sided incremental forming toolpath strategy for improved geometric accuracy, *Journal of Manufacturing Science and Engineering*, **137**, 051007, 2015.[*Link*]
- <u>R. Xu</u>, X. Shi, D. Xu, R. Malhotra, J. Cao^{*}, A preliminary study on the fatigue behavior of sheet metal parts formed with accumulative-double-sided incremental forming, *Manufacturing Letters*, 2, 8-11, 2014. [*Link*]

Manuscript Under Review or In Preparation

- $\mathbf{R} =$ Under review | $\mathbf{P} =$ In preparation
- **P2.** <u>**R**. Xu</u>, A.M. Chang, E. Pieri, T.J. Martínez^{*}, From chemical reaction discovery to kinetic modeling: The *ab initio* nanoreactor, *Nature Review Chemistry*, invited review, in preparation.
- **P1.** D.C. Lee, <u>**R. Xu**</u>, E.J. Flear, S. Holm, D. Hait, T.J. Martínez^{*}, Y. Xia^{*}, Hijacking mechanochemical intermediates for force-free reactions, in preparation.

Invited Talks and Conference Presentations

- **30. Invited:** Application of the *ab initio* nanoreactor and the nonadiabatic *ab initio* molecular dynamics to photodegradation, *BASF CARA* 10th *Anniversary and Spring Review Meeting*, Berkeley, CA, April, 2024.
- **29.** Advancing aerospace sustainability and high-speed propulsion: Reacting flow modeling across molecular to continuum scales, *Department of Aeronautics and Astronautics, Massachusetts Institute of Technology*, April, 2024.
- **28.** Enabling aerospace sustainability and high-speed propulsion: Reacting flow modeling across molecular to continuum scales, *Department of Mechanical Engineering, Michigan State University*, April, 2024.
- **27.** Multiscale reacting flow: From *ab initio* molecular modeling to continuum flow physics, *Department of Aerospace Engineering, Texas A&M University*, March, 2024.

- **26.** Enabling aerospace sustainability and high-speed propulsion: Reacting flow modeling across molecular to continuum scales, *Department of Mechanical Engineering*, *University of Maryland*, March, 2024.
- **25. Invited:** Bridging the gap between first principles reaction discovery and continuum modeling, *ACS Spring* 2024, New Orleans, LA, March, 2024. [*Poster presentation as the winner of Wiley Computers in Chemistry Outstanding Postdoc Award*]
- 24. Enabling sustainable aviation and high-speed propulsion: Reacting flow modeling across molecular to continuum scales, *School for Engineering of Matter, Transport and Energy, Arizona State University*, March, 2024.
- **23.** Enabling aerospace sustainability and high-speed propulsion: Reacting flow modeling across molecular to continuum scales, *Department of Mechanical and Aerospace Engineering*, *North Carolina State University*, March, 2024.
- **22.** Enabling sustainable propulsion and clean energy transitions: Reacting flow modeling across molecular to continuum scales, *Department of Mechanical and Industrial Engineering, University of Illinois Chicago*, February, 2024.
- **21.** Enabling sustainable propulsion and clean energy transitions: Reacting flow modeling across molecular to continuum scales, *Department of Aerospace and Mechanical Engineering, University of Southern California*, January, 2024.
- **20. Invited:** Multiscale first principles reaction discovery for methane pyrolysis, *Physical Chemistry Seminar, Department of Chemistry and Chemical Biology, Rutgers University,* November, 2023.
- **19.** Application of the *ab initio* nanoreactor and the nonadiabatic *ab initio* molecular dynamics to polymer degradation, *BASF CARA Meeting*, Santa Barbara, CA, October, 2023.
- **18.** Automatic first principles reaction discovery from *ab initio* molecular dynamics to chemical kinetics prediction for methane pyrolysis, *ACS Fall 2023*, San Francisco, CA, August, 2023.
- **17.** Enabling sustainable aviation: Reacting flow modeling from molecular scale to device, *Department of Aeronautics and Astronautics, Massachusetts Institute of Technology*, March, 2023.
- **16.** Integrating computational reaction discovery in the *ab initio* nanoreactor with kinetic modeling and sensitivity analysis, 2022 *AICHE Annual Meeting*, Phoenix, AZ, November, 2022.
- **15.** Computational reaction discovery in the *ab initio* nanoreactor integrated with kinetic modeling and sensitivity analysis, *ACTC* (*American Conference on Theoretical Chemistry*) 2022, Palisades Tahoe, CA, July, 2022.[*Lightning talk video*]
- **14.** Effect of pyrolysis product species measurement uncertainties on the prediction accuracy of HyChem reaction model A case study on Jet A, *ACS Fall 2020 Virtual Meeting*, August, 2020.
- **13. Invited:** HyChem approach to modeling real-fuel combustion chemistry: From ignition, flame propagation to emission predictions, *ACS Fall 2020 Virtual Meeting*, August, 2020.
- **12.** Sensitivity of HyChem model accuracy to species measurement uncertainties of fuel pyrolysis, *11*th U.S. *National Meeting on Combustion*, Pasadena, CA, March, 2019.
- **11.** Principle of large component number in multicomponent fuel combustion a Monte Carlo study, 37th International Symposium on Combustion, Dublin, Ireland, August, 2018.

- **10. Invited:** Available HyChem models for major hydrocarbon fuels: JPs for aviation, RPs for space and gasoline for automotive applications, 11th MACCCR (Multi-Agency Coordinating Committee for Combustion Research) Annual Fuel and Combustion Research Review Meeting, Sandia National Laboratories, Livermore, CA, April, 2018.
- **9. Invited:** HyChem model details for Air Force real fuels: JP_x and RP_x, 2017 AFOSR/ARO/NSF *Basic Combustion Research Review Meeting*, Basic Research Innovation and Collaboration Center, Arlington, VA, June, 2017.
- 8. HyChem model: application to petroleum-derived jet fuels, 10th U.S. National Meeting on Combustion, College Park, MD, April, 2017.
- **7.** Evidence supporting a simplified approach to modeling high-temperature combustion chemistry, 10th U.S. National Meeting on Combustion, College Park, MD, April, 2017.
- **6.** Evidence supporting a simplified approach to modeling high-temperature combustion chemistry, *HTGL* (*High-Temperature Gasdynamics Laboratory*) *Seminar, Department of Mechanical Engineering, Stanford University,* April, 2017.
- 5. HyChem approach to combustion chemistry of jet fuels, 2017 TFSA (*Thermal & Fluid Sciences Affiliates*) and Sponsors Conference, Stanford University, February, 2017.
- **4.** A comparative study of combustion chemistry of conventional and alternative jet fuels with hybrid chemistry approach, *55th AIAA Aerospace Sciences Meeting*, Grapevine, TX, January, 2017.
- **3.** HyChem approach to combustion chemistry of jet fuels, *HTGL Seminar*, *Department of Mechanical Engineering*, *Stanford University*, December, 2016.
- 2. HyChem model: A real fuel combustion chemistry approach, *Center for Combustion Energy*, *Tsinghua University*, Beijing, China, June, 2016.
- **1.** A mixed toolpath strategy for improved geometric accuracy and higher throughput in doublesided incremental forming, *ASME Manufacturing Science and Engineering Conference*, Detroit, MI, June, 2014.

Contributed Grants

ASTROBi Foundation Grant, PI: Todd Martínez

- Proposal: Simulating and understanding reaction network consistent with prebiotic chemistry at alkaline hydrothermal vents on earth and Enceladus
- Contributions: Assisted with text writing and figure production.

AFOSR DURIP Award, PI: Hai Wang

- Proposal: Advanced diagnostics for detonation waves in small tubes and nano carbon formation at high pressures
- Contributions: Assisted with preliminary data generation, figure production, and text writing

AFOSR Grant, PI: Hai Wang

- Proposal: Sensitizing reaction chemistry in detonation
- Contributions: Assisted with preliminary data generation, figure production, and text writing

2024

2020

2019

Teaching Experience

Teaching Certificate, Stanford Scientific Teaching Summer Institute	2022
Martínez group subgroup leader/lecturer, Stanford University	2022 – present
 Excited state dynamics subgroup (Sept. 2022 – present) Offering a lecture series on <i>quantum and classical dynamics</i> Courses offered so far: Introduction to time dependent Schrodinger equation; I and Wigner transformation; Erhenfest dynamics; Numerical integration and version Nanoreactor and Machine learning subgroup (Sept. 2021 – Sept. 2022) Offered a lecture series on <i>reaction kinetics and rate theory</i> 	Density operator elocity verlet
 Courses offered: Gas phase collition theory; Transition state theory; Unimole Lindamann mechanism and Hinshelwood theory; RRKM theory 	ecular reactions,
Martínez group summer school lecturer, Stanford University	2021
• Course offered: <i>Claisscal Dynamics and Symplectic Integrators</i>	
Guest lecturer, Stanford University	2019
 Course: ME 371: Combustion Fundamental Offered a guest lecture on real-fuel combustion chemistry 	
Teaching Assistant, Stanford University	2018
 Course: ME 371: Combustion Fundamental Held bi-weekly problem sessions and two 50-minute guest lectures 	
Mentorship Experience	

Alexander M. Chang, Ph.D. Candidate in Chemistry, Stanford University	2020 – present
• Automated reaction discovery in the <i>ab initio</i> nanoreactor	
Soren Holm, Ph.D. Candidate in Chemistry, Stanford University	2020 – present
• Multiscale modeling of stress-responsive materials from first principles	
Ethan Curtis, Ph.D. Candidate in Chemistry, Stanford University	2020 – present
 Computational study of photomechanical switch molecules 	
Nicholas Gloria, M.S. in Aeronautics and Astronautics, Stanford University	2019
 Modeling equilibrium chemistry in rocket expansion external flows 	
Nikolaos Kateris, Ph.D. in Mechanical Engineering, Stanford University	2018 - 2020
• Computational study of interactions between polycyclic aromatic hydrocarbons and	nd metal ions
Kevin Wan, Ph.D. in Mechanical Engineering, Stanford University	2017 - 2020
• Experimental and numerical study of NO_x and soot emission from jet fuels	
Yue Zhang, Ph.D. in Mechanical Engineering, Stanford University	2016 - 2020
 Modeling combustion chemistry of foundational fuels using machine learning app DFT study on electrochemistry of sodium-sulfur battery in collaboration with exp 	1

Service

Conference Session Chair/Presider	
 Session Presider, ACS Fall 2023, COMP Division, Quantum Chemistry Session 	2023
• Session Chair, Western States Section Combustion Meeting, Nanomaterials/Soot section	2020

Journal Reviewer

Combustion and flame; Proceedings of the Combustion Institute; Progress in Energy and Combustion Science; Applications in Energy and Combustion Science; Combustion Science and Technology; The Journal of Physical Chemistry; Fuel; Energy; Fire; Fuel Processing Technology; International Journal of Hydrogen Energy; International Journal of Environmental Research and Public Health

Conference Proceeding Reviewer

• International Symposium on Combustion, ASME Turbo Expo

Organizations

• The Combustion Institute; ACS (COMP & ENFL); AIAA; AICHE (COMSEF); ASME